Русский

The application of lasers in material processing has driven industrial progress in Santa Catalina state

140
2023-09-26 14:49:52
Посмотреть перевод

Laser material processing has been widely used in advanced industries, ranging from designing and producing lightweight, ultra wear-resistant parts and equipment with complex geometric shapes to repairing damaged or worn components through technologies such as 3D printing of deposited metal powders or deposits.

Use laser pulses for surface treatment to prevent fatigue. But the impact of such technologies on industry competitiveness far exceeds the quality or special performance of the equipment they provide.

Mechanical engineer Lu í s Gonzaga Trabasso explained, "For example, we are discussing replacing physical inventory of spare parts with digital inventory." He is the chief researcher at ISI Laser Manufacturing and Processing Systems in Jonville and leads a team of 135 people. This includes 90 researchers.

Trabasso refers to the ability to store multiple parameters of a recipe in a digital library to build parts that are crucial to the industry, and to quickly manufacture and supply them with the click of a button when urgent demand arises. High performance laser printing equipment. The concept we use is' additive maintenance ', which is a branch of additive manufacturing aimed at replacing parts.

This type of library has been developed by SENAI Research Institute and has over ten projects commissioned by private sector partners. Most of it comes from a project of Brazilian National Petroleum Corporation. The company has defined some components that are crucial for pipeline and platform maintenance. ISI Processamento a Laser has developed digital files that contain the characteristics and parameters required for manufacturing components. If parts need to be replaced, we will print them out and quickly supply them to the company, "Trabasso explained.

An oil platform that produces 15000 to 20000 barrels of oil per day incurs an hourly profit loss of $2 million. Therefore, it is crucial to produce and deliver the required parts within a few days. Additive manufacturing has other uses, such as replacing non compliant equipment. Establishing a digital library that can be printed on demand can eliminate logistics and infrastructure costs.

The SENAI research team has been visiting companies in different fields to disseminate such technical services developed within the scope of digital manufacturing projects, which also involve collaboration with optical system manufacturers such as Zeiss and Fraunhofer Research Institute, both of which are from Germany. ISI Processamento a Laser has established a partnership with Furnas Central El é tricas to expand the library and communicate with other fields such as automotive manufacturers.

In addition to producing customized parts, laser processing can also help companies repair damaged or worn large equipment. The Additive Manufacturing Tools (FERA) project was launched in 2021 and lasted for three years, bringing together four scientific, technological, and innovation institutions as well as an alliance of 26 companies related to the automotive industry chain. This includes automotive groups such as General Motors and Stellantis, component manufacturers such as Maxion and Bosch, as well as traditional enterprises such as Romi and Sab ó. This project is funded by the Rota 2030 program and involves an investment of approximately R $11.6 million.

The goal of FERA is to transfer knowledge to the alliance. The plan focuses on two widely used technologies abroad: laser powder bed fusion (L-PBF), which can manufacture parts with complex geometric shapes and is lighter in weight and more resistant compared to traditional technologies; Directional deposition of laser energy (L-DED), when targeted by an energy source, can simultaneously achieve the deposition and melting of metal powders. L-DED can be used to repair large stamping tools, quickly recover defects and wear, and do not waste materials.

This proposal is to replace welding with laser additive manufacturing in part repair, "Trabasso explained. One of the main obstacles to this project is not technology, but rather a lack of understanding of its advantages in the company's mold industry, especially in the automotive industry. Another broader challenge includes establishing a supply chain for additive manufacturing in Brazil - the metal powder used for printing parts is currently imported.

Additive manufacturing is the process of manufacturing three-dimensional parts by adding continuous material layers based on digital models. In addition to this method, lasers can also be used for material reduction manufacturing, which involves removing nanoscale materials in order to endow the surface with new characteristics. This is an interesting technique that can improve the painting process of components because it can increase the anchoring of the paint, "said Trabasso. Finally, there is transformative manufacturing, which does not remove or add layers, but uses lasers (such as welding parts) to change the material.

But there are also laser technologies aimed at improving the quality of components produced through additive maintenance. Embrapii, a Brazilian industrial research and innovation company, has launched a project in collaboration with companies such as Embraer, Randon, and Tupy, as well as ISI Processamento a Laser, to develop the application of laser shock strengthening technology in Brazil. Through it, the metal surfaces produced by additive manufacturing are bombarded by laser pulses, giving them greater resistance and preventing the propagation of cracks and cracks.

The parts produced by additive manufacturing have roughness and may be harmful in some cases. Laser shock peening is a type of surface micro hammering, "said Antonio Fasano, Technical Director of Omnitek, an automation equipment company based in S ã o Paulo that has been integrated into the Embrapii project. Omnitek was founded in 1995 and specializes in producing laser based industrial systems. Today, the company sells metal laser 3D printers to companies and research institutions in countries such as Brazil, Canada, and the United States.

It will work with the ISI Processamento Laser team to develop control equipment that can perform laser pulse bombardment on parts with quite complex geometric shapes. Our goal is to put the laser shock strengthening equipment developed in Brazil into commercial use within two years.

Source: Laser Network

Связанные рекомендации
  • Breakthrough! Extending the lifespan of solar panels to 50 years using lasers

    Recently, the National Renewable Energy Laboratory (NREL) under the US Department of Energy has made a revolutionary breakthrough by developing a concept validation method aimed at completely removing polymers from solar panel manufacturing, thereby achieving more efficient and environmentally friendly recycling.Solar panels have always been praised for their recyclability. However, the thin plast...

    2024-04-30
    Посмотреть перевод
  • FABULOUS provides certified food safety 3D printing materials to the United States

    As is well known, 3D printing is becoming increasingly popular and expanding its application areas to different fields. Additive manufacturing has been established in the aerospace, automotive, and medical industries and is now being used in the production of consumer goods and luxury goods, construction, and food industries. On the one hand, this mainly involves innovative edible products from 3D...

    2024-05-27
    Посмотреть перевод
  • Mycronic receives first order after upgrading solid-state lasers

    Recently, Mycronic AB received its first order from SK Electronics in Japan to upgrade the installed display mask writer from a gas laser to a solid-state laser. The upgrade is scheduled to be delivered within the next two years.Image source: MycronicIt is reported that Mycronic's "Pattern Generators" department provides mask writers for display manufacturing and semiconductor production. So far, ...

    2023-10-16
    Посмотреть перевод
  • Experimental verification of driving pressure enhancement and smoothing for hybrid driven inertial confinement fusion on a 100 kJ laser device

    The research teams from the Laser Fusion Research Center of the Chinese Academy of Engineering Physics, the Beijing Institute of Applied Physics and Computational Mathematics, Peking University, and Shenzhen University of Technology reported experimental verification of the driving pressure enhancement and smoothing of hybrid driven inertial confinement fusion on a 100 kJ laser equipment.The relev...

    2023-09-25
    Посмотреть перевод
  • QBeam launches innovative window ablation laser system to achieve free space optical communication

    QBeam is a leader in developing breakthrough optical products and announced today that its handheld laser ablation equipment is fully launched for free space optical communication in indoor office locations. The qBeam window ablation laser allows for the installation of optical communication terminals indoors by treating windows that otherwise block the infrared beams of the terminals.Commercial b...

    2024-02-15
    Посмотреть перевод