Русский

Kearns Launches 3-Axis Controlled UV Laser Marking Machine to the UK Market

127
2023-10-09 13:59:36
Посмотреть перевод

Recently, Keyence announced that it has delivered the MD-U series of 3-axis controlled UV laser marking machines to its UK customers. This product technology utilizes ultraviolet lasers with high absorption rates to perform cold labeling on various materials - a process that can be carried out under minimum thermal stress.

UV laser is generated by passing a standard wavelength laser (1064nm) through a nonlinear crystal and then reducing the wavelength size to (355nm) through third harmonic generation (THG) through another crystal.

As the demand for more complex products and diverse materials increases, Keinz has developed triaxial lasers to meet the demand for higher quality and more stable results. The company stated that lasers can achieve high contrast and uniform labeling on materials that were previously difficult to label. These operations can be performed at 330 × On an area of 330 millimeters, while reducing costs and simplifying the processing process.

This 3-axis UV laser marking machine can be used to generate high contrast markings on various materials, such as plastic, glass, and other thermosensitive materials. The marking head of the MD-U includes an embedded multifunctional camera that can automatically focus on a part, check the quality of the marking, and read the 2D code. By tracking unintentional deviations in target height or tilt, it is possible to prevent marking defects throughout the entire marking area.

Kearns also stated that its maximum operating speed in standard areas is 12000 mm/s, with built-in proprietary digital scanners and different quality adjustment levels, making the laser work faster than traditional models. At the same time, pattern selection software can customize and edit materials.

Kearns has developed the aforementioned laser using its proprietary sealing method, ensuring that its components have environmentally friendly performance and are not affected by factors such as dirt, dust, and water droplets.

In fact, three-axis laser technology has potential applications in various industries, including the automotive industry - it can help develop plastic parts, cationic painted parts, and smaller parts. In the electronics industry, it can help manufacture LED lights, wafers, and more. In addition, it will be able to assist the medical industry in developing tablets, bottles, and instruments, as well as manufacturing shells for some products in the food/cosmetics industry.

Source: OFweek

Связанные рекомендации
  • Xinjiang Institute of Physical and Chemical Technology has established the largest database of computational nonlinear optical crystal materials to date

    Modern laser technology urgently requires nonlinear optical materials that can generate coherent light through second harmonic generation. However, only a small portion of the nonlinear optical properties of non centrosymmetric crystal materials have been experimentally or theoretically studied, and exploration for high-performance nonlinear optical crystal materials is still very limited.Recentl...

    2023-10-24
    Посмотреть перевод
  • Japan's Murata Machinery Launches a Punch and 4kW Fiber Laser Integrated System

    Recently, Murata Machinery USA, a representative Japanese manufacturer of machinery and CNC machine tools, announced the launch of the latest cutting-edge punch and fiber laser integrated equipment - MF3048HL. This integrated machine combines the advantages of punch operation and laser cutting technology, eliminating the need for separate settings or material transfer between machines.Muratec's pu...

    2023-09-01
    Посмотреть перевод
  • Amazon's Kuiper Program Successfully Tested Satellite Space Laser

    SpaceX and its billionaire CEO Elon Musk may finally have reason to look back in the satellite internet competition. On Thursday, Amazon revealed that it had successfully used a space laser technology called "Optical Intersatellite Link" to transmit connections between two Kuiper Program satellites in low Earth orbit, located 621 miles apart, at a speed of 100 gigabits per second. This is approxim...

    2023-12-18
    Посмотреть перевод
  • The Stanford University team has manufactured the first practical chip grade titanium sapphire laser

    According to a report in Nature on June 26th, a team from Stanford University in the United States has developed a titanium sapphire laser on a chip. Whether in terms of scale efficiency or cost, this achievement is a huge progress. Image source: Nature websiteTitanium sapphire lasers are indispensable in many fields such as cutting-edge quantum optics, spectroscopy, and neuroscience, but they ...

    2024-07-01
    Посмотреть перевод
  • Filatek: Leading the Development of Laser, Shining "Additive Prince"

    In recent years, the field of laser technology has received widespread attention from the outside world. At that time, the Munich Shanghai Electronic Production Equipment Exhibition was successfully held in Shanghai, and Suzhou Feilaitek Laser Technology Co., Ltd. (hereinafter referred to as "Feilaitek"), a leading enterprise in the field of industrial laser 3D dynamic focusing systems, appeared a...

    2024-04-12
    Посмотреть перевод