Русский

Laser direct writing technology for preparing micrometer scale heatable graphene de icing and anti icing surfaces broadens the preparation method of new de icing and anti icing devices

133
2023-10-16 11:28:42
Посмотреть перевод

Research background
In transportation, industrial production, and practical life, icing often brings great troubles, and the most serious is that during the flight of an aircraft, key components once frozen will seriously affect navigation safety.

The traditional passive deicing and anti icing strategies for aircraft, such as mechanical vibration and anti freezing liquids, have problems such as incomplete deicing effect, environmental pollution, and reduced skin life; However, the common pneumatic and thermal active deicing and anti icing strategies on aircraft face problems such as inaccurate control and increased energy consumption. Although the new electric thermal active deicing and anti icing system has advantages such as high efficiency, good reliability, and easy control, the drawbacks of high electrical energy consumption have always limited its development. Currently, the industry urgently needs stable, efficient, and reliable new deicing and anti icing technologies.

Research Highlights 
This article focuses on the development bottleneck of high energy consumption in electric active deicing and anti icing, combined with the cutting-edge anti icing technology of hydrophobic materials in the current industry. With the help of Laser Induced Graphene (LIG) technology, which can simultaneously achieve graphene generation and precision patterning design, the common 10.6 μ By directly irradiating polyimide film (PI) with m CO2 laser and adjusting the scanning speed of the laser (50-125 mm/s), a micron scale grooved graphene surface with both hydrophobicity/superhydrophobicity and electrothermal function was successfully prepared under atmospheric pressure, expanding the preparation methods of new deicing and anti icing devices.

The basic characterization and performance testing of hydrophobic graphene surfaces revealed for the first time a significant linear negative correlation between the width of the grooves and scanning speed, which is of great significance for precise micro adjustment in laser manufacturing.

Low temperature icing tests and stability tests have shown that graphene surfaces have the potential to be reused for long-term hydrophobic and delayed icing applications.

Joule thermal performance tests have shown that graphene surfaces can achieve an electric heating effect of 45.5 ℃ -151.3 ℃ under low DC voltage supply (3 V-7 V), and can achieve surface defrosting and deicing functions (such as defrosting within 5 seconds and deicing within 90 seconds under 5V power supply) in an environment of -23 ℃.

The above research content and results demonstrate that laser induced graphene technology can efficiently and quickly convert polymer surfaces with hydrophilic wetting properties into micron scale hydrophobic graphene surfaces with hydrophobic wetting properties, providing a new approach and preparation method for preparing multifunctional deicing and anti icing surfaces with both hydrophobic and electrothermal functions.

The corresponding results were published in the Coatings journal under the title of "Fabric of Micron Structured Headable Graphene Hydrophobic Surfaces for Decking and Anti Icing by Laser Direct Writing". The first author of the article was Li Shichen, a 2021 master's student at the School of Avionics and Electrical Engineering, China Civil Aviation University, The co corresponding authors are Associate Professor Zhong Mian from the School of Avionics and Electrical Engineering, China Civil Aviation Flight Academy, and Professor He Qiang from the School of Civil Aviation Safety Engineering.

Source: Sohu


Связанные рекомендации
  • The Linac Coherent Light Source II X-ray Laser in the United States has completed over a decade of upgrading and emitted the first X-ray with a record breaking brightness

    According to reports, the Linac Coherent Light Source II (LCLS-II) X-ray laser at the Stanford SLAC National Accelerator Laboratory in the United States has just completed an upgrade that took more than a decade. After a facelift, it has become the world's brightest X-ray facility and emitted the first record breaking X-ray, allowing researchers to record the behavior of atoms and molecules in bio...

    2023-09-20
    Посмотреть перевод
  • Purchase Atomstack S20 Max 657W laser engraving machine from CAFAGO for 20 euros

    Want to unleash your creativity with cutting-edge laser engraving machines? The new Atomstack S20 Max 20W laser engraving machine is your perfect choice! With a series of groundbreaking features and larger creative space, this machine's beast will completely change your laser carving experience.Farewell to restrictions! The Atomstack S20 Max has a wide working area of 850 * 400mm, and can easily m...

    2023-11-11
    Посмотреть перевод
  • Hamamatsu Photonics completes construction of new factory area

    Recently, Hamamatsu Photonics in Japan completed the construction of a new building at Miyakoda Manufacturing Co., Ltd. in Hamami ku, Hamamatsu City. The completion ceremony was held on July 29th, and the factory will start full production in November 2024, increasing overall production capacity by 2.5 times.Source: Hamamatsu PhotonicsIt is reported that Hamamatsu Photonics focuses on the developm...

    2024-08-01
    Посмотреть перевод
  • New types of lenses in optics: Researchers develop hybrid achromatic lenses with high focusing efficiency

    Researchers at the University of Illinois at Urbana Champaign have developed compact visible wavelength achromatic mirrors using 3D printing and porous silicon, which are crucial for miniaturization and lightweight optical devices. These high-performance hybrid micro optical devices can achieve high focusing efficiency while minimizing volume and thickness. In addition, these microlenses c...

    2023-12-11
    Посмотреть перевод
  • Israeli startup has developed a new laser powder bed fusion technology (SLS)

    Starting company 3DM from Israel has developed a new laser powder bed fusion technology (SLS) and recently released its first product. It is reported that the new technology developed by this young company established in 2016 will open up the possibility of new materials.3DM quantum cascade laserThe quantum cascade laser (QCL) stands out in the competition of 3DM in the SLS field. QCL was develope...

    2023-10-27
    Посмотреть перевод