Русский

NASA plans to use lasers to measure the impact of exhaust gases on the lunar surface during landing, in order to plan lunar landings more effectively

249
2023-10-31 11:08:22
Посмотреть перевод

Recently, NASA's official website showed that a research team at the University of Central Florida has tested an instrument called Ejecta STORM, which aims to measure the size and velocity of surface particles generated by exhaust gases from rocket powered landers on the moon or Mars.

According to NASA, when a spacecraft lands on the moon or Mars, rocket exhaust plumes can produce efflorescent ejecta (abrasive dust and rapidly moving large particles) that may damage the lander and surrounding structures. Understanding how the exhaust of rocket engines affects the ejectors will help task designers model soil erosion rate, particle size distribution, and velocity related to plume surface interactions, thereby more effectively planning lunar landings.

To meet this demand, researchers at the University of Central Florida have developed a laser instrument called Ejecta STORM (Sheet Tracking, Opacity, and Regolith Material). The four tethered flights allowed researchers to test the integration of the system with the lander and simulate the operation under flight conditions of the lunar lander plume effect. These tests are based on data collected during flight activities conducted using Xiaodac in 2020.

Researchers hope that this technology can provide information for model development and reduce the risk of future lunar landings, ultimately improving the design of planetary science missions based on rovers, manned lunar and other celestial missions, and on-site resource utilization missions.

Source: Sohu

Связанные рекомендации
  • Observation of laser power changes in ultrafast protein dynamics

    When researchers at the Max Planck Institute of Medicine conducted their first ultrafast X-ray crystallographic experiment on myoglobin in 2015, they were not aware that they had conducted the wrong experiment. By increasing the power of X-ray free electron lasers to ensure usable diffraction patterns, lead researcher Ilme Schlichting said that they "suddenly entered the wrong [excited] state with...

    2024-02-28
    Посмотреть перевод
  • High performance optoelectronic device developer "Micro Source Photon" completes B+round financing

    Recently, Weiyuan Photon (Shenzhen) Technology Co., Ltd. (hereinafter referred to as "Weiyuan Photon") announced the completion of a B+round of financing, with investors including Yicun Capital, Chenfeng Capital, and Beijing Guoqian Investment. The specific amount has not been disclosed. According to its official website, MicroSource Photonics was founded in November 2018, with the main members...

    2024-07-23
    Посмотреть перевод
  • Scientists have demonstrated a new way to make infrared light from quantum dots, and the experiments are still in the early stages

    Scientists at the University of Chicago have demonstrated a way to create infrared light using colloidal quantum dots. The researchers say this approach shows great promise; Although the experiment is still in its early stages, these quantum dots are already as efficient as existing conventional methods.These points could one day form the basis of infrared lasers, as well as small and inexpensive ...

    2023-09-08
    Посмотреть перевод
  • Xunlei Laser 20000W Large Format Laser Cutting Machine Winning the Bid for YD Company, a Famous Enterprise in the Steel Structure Industry

    Recently, the Xunlei Laser HI series 20000W large format laser cutting machine won the bid of YD Company, a well-known steel structure company, to help YD steel structure improve quality, efficiency, and green transformation!Established in 2009, YD Steel Structure is a large-scale specialized steel formwork enterprise that has established deep business partnerships with leading construction indust...

    2023-11-06
    Посмотреть перевод
  • Fundamentals of Next Generation Photonic Semiconductors: Small Lasers

    This week, an illustration was published on the cover of the international journal Science, showcasing a powerful mode-locked laser emitted from a miniature photonic semiconductor.A research team led by Alireza Marandi, a professor of electrical engineering and applied physics at the California Institute of Technology, has successfully developed a conventional mode-locked laser large enough to fit...

    2023-11-13
    Посмотреть перевод