Русский

Cambridge University researchers use lasers to "heat and strike" 3D printed steel

96
2023-11-03 15:05:19
Посмотреть перевод

According to the University of Cambridge, researchers have developed a new method for 3D printing metal, which can help reduce costs and more effectively utilize resources. This method, developed by a research team led by the University of Cambridge, allows structural modifications to be "programmed" into metal alloys during 3D printing - fine-tuning their performance without the need for thousands of years of "heating and tapping" processes.

The new 3D printing method combines the best quality of two worlds: 3D printing makes complex shapes possible, and traditional methods allow for the engineering design capabilities of metal structures and performance. The research results are published in the journal Nature Communications.

3D printing has broad prospects, but it still has not been widely used in industry, mainly due to high production costs, "said Dr. Matteo Seita of the Engineering Department at the University of Cambridge, who led the research. One of the main drivers of these costs is the amount of adjustment required for materials after production.

Since the Bronze Age, metal parts have been made through the process of heating and beating. This method uses a hammer to harden the material and soften it through fire, allowing manufacturers to shape the metal into the desired shape while endowing it with physical properties such as flexibility or strength.

The reason why heating and beating are so effective is because they change the internal structure of the material, which can control its performance, "Seita said. That's why it's still in use thousands of years later.

One of the main drawbacks of current 3D printing technology is the inability to control the internal structure in the same way, which is why so many post production changes are needed. We are trying to come up with some methods to restore some structural engineering capabilities without the need for heating and tapping, which in turn will help reduce costs, "Seita said. If you can control the metal properties you want, you can take advantage of the green aspect of 3D printing.

Seita has collaborated with colleagues from Singapore, Switzerland, Finland, and Australia to develop a new 3D printed metal "formula" that can highly control the internal structure of materials when they are melted by laser.

By controlling the way the material solidifies after melting and the heat generated during the process, researchers can program the characteristics of the final material. Usually, metals are designed to be sturdy and tough, so they can be safely used for structural applications. 3D printed metal is inherently sturdy, but it is usually also very brittle.

The strategy developed by researchers triggers controlled reconfiguration of microstructure by placing 3D printed metal components in a furnace at relatively low temperatures, thereby fully controlling strength and toughness. Their method uses traditional laser based 3D printing technology, but has made some minor adjustments to the process.

We found that lasers can be used as' micro hammers' to harden metals during the 3D printing process, "Seita said. However, using the same laser to melt the metal a second time will relax the structure of the metal, allowing for structural reconfiguration when the parts are placed in the furnace.

Their 3D printed steel has undergone theoretical design and experimental verification, made of alternating regions of sturdy and tough materials, making its performance comparable to that of steel made by heating and beating.

We believe that this method can help reduce the cost of metal 3D printing, thereby improving the sustainability of the metal manufacturing industry, "Seita said. In the near future, we hope to bypass the low-temperature treatment in the furnace and further reduce the steps required before using 3D printed parts in engineering applications.

The team includes researchers from Nanyang University of Technology, the Science and Technology Research Bureau, the Paul Scherrer Institute, the VTT Technology Research Center in Finland, and the Australian Nuclear Science and Technology Organization. Matteo Seita is a researcher at St. John's College, Cambridge University.

Source: Laser Network

Связанные рекомендации
  • IPG Q1 revenue of $252 million, co-founder and new CEO of Jiaobang

    Recently, IPG Photonics, a high-performance fiber laser supplier in the United States, released its first quarter financial report as of March 31, 2024.The financial report shows that IPG Photonics revenue in the first quarter was 252 million US dollars, a year-on-year decrease of 27%; The net profit was 19 million US dollars, a year-on-year decrease of 75%. The change in foreign exchange rate res...

    2024-05-07
    Посмотреть перевод
  • Three core processes of laser soldering support the development of PCB electronics industry

    In the field of modern electronic manufacturing, PCB (printed circuit board) serves as the carrier of electronic components. In its manufacturing process, laser soldering technology has become a key link in PCB electronic manufacturing due to its advantages of high precision, high efficiency, and low thermal impact. This article will explore the application of laser soldering technology and its ma...

    2024-04-15
    Посмотреть перевод
  • Researchers use desktop laser systems to generate ultrafast electrons

    In a mass particle accelerator, subatomic particles are accelerated to ultrahigh speeds that are comparable to the speed of light towards the target surface. The accelerated collision of subatomic particles produces unique interactions, enabling scientists to gain a deeper understanding of the fundamental properties of matter.Traditionally, laser based particle accelerators require expensive laser...

    2024-03-14
    Посмотреть перевод
  • GeoCue introduces three new TrueView 3D imaging systems

    Earlier this month, GeoCue, a liDAR mapping hardware and software provider, announced the launch of three new products for its TrueView 3D imaging system. These new systems combine laser scanning and high-resolution imaging, including the TV625, TV680 and TV680LR. All three systems are NDAA-compliant.All three systems are designed to be used in conjunction with drones, and the company note...

    2023-08-04
    Посмотреть перевод
  • Laser manufacturer DIT signs KRW 20.52 billion agreement

    Recently, DIT, a well-known semiconductor and display equipment manufacturer in South Korea, announced that the company has signed an agreement worth 20.52 billion Korean won to supply wafer processing equipment to SK Hynix. After the announcement, DIT's stock price rose for five consecutive days, entering the 16000 Korean won range. Then on the 22nd, it rose 2580 Korean won from the previous day'...

    02-15
    Посмотреть перевод