Русский

Progress makes laser based imaging simpler and more three-dimensional

138
2023-12-05 14:31:19
Посмотреть перевод

a. b. Schematic diagram of PACTER system calibration and imaging program. BT, beam trap; DAQ, data acquisition unit; HWP, half wave plate; PBS, polarization beam splitter; ER, traverse the relay. The difference between the two modes is highlighted by a black dashed box.

c. Schematic diagram of a single component ultrasonic transducer manufactured on ER.

d. The ultrasound transducer detected 1D PATTER signals 0, t1, and tN. e at time instance t, and reconstructed a 4D image of the human palm blood vessel based on the signals in d.

Sometimes, scientific progress appears in the form of discovering new things. At other times, progress boils down to doing better, faster, or easier. The new research by Professor Li Hong Wang, a professor of medical and electrical engineering at the California Institute of Technology and Professor Bren Wang's laboratory, is the latter.

In a paper published in the journal Nature Biomedical Engineering titled "Ultrafast longitudinal imaging of biomedical via single shot volumetric photoacoustic tomography with a single element detector," Wang and postdoctoral scholar Yide Zhang demonstrated how they simplified and improved the imaging technology they first announced in 2020.

This technology is a photoacoustic imaging technique called PATER, which is the expertise of the Wang team.
In photoacoustic imaging, the laser is pulsed into the tissue, where it is absorbed by the molecules of the tissue, causing them to vibrate. Each vibrating molecule serves as a source of ultrasound and can be used to image internal structures in a manner similar to ultrasound imaging.

However, photoacoustic imaging is technically challenging as it can generate all imaging information in a short period of time. In order to capture this information, early versions of Wang's photoacoustic imaging technology required pressing arrays of hundreds of sensors onto the surface of the imaged tissue, making the technology complex and expensive.

Wang and Zhang reduced the required number of transducers by using a device called a traversal relay, which slows down the speed of information flowing into the transducers. As explained in the previous story about PATER: "In computing, there are two main ways to transmit data: serial and parallel. In serial transmission, data is sent in a single stream form through a communication channel. In parallel transmission, multiple communication channels are used to send multiple data simultaneously.".

Source: Laser Net

Связанные рекомендации
  • Progress in the research and development of high-performance electrically pumped topology lasers in semiconductor manufacturing

    Topological laser (TL) is an ideal light source for future new optoelectronic integrated chips, designed and manufactured using topological optics principles to obtain robust single-mode lasers. Electrically pumped topology lasers have become a research hotspot due to their small size and ease of integration, but topology lasers based on electrical injection are still in the early stages of resear...

    2024-07-11
    Посмотреть перевод
  • A New RIEGL Laser Scanning Solution for Drone Data Acquisition

    With its latest developments, RIEGL once again emphasizes its pioneering role as a supplier of high-performance LiDAR sensors and integrated systems with UAS. The continuous trend in the drone system industry requires measurement level laser scanners that match the integrated performance of compact multi rotor and high-speed vertical takeoff and landing or fixed wing drone platforms.RIEGL has reco...

    2023-12-01
    Посмотреть перевод
  • Laser technology reveals hidden gases in complex mixtures

    Laser Network reported on January 11th that modern equipment has been fine tuned to detect highly specific gases, including trace gases found in the atmosphere, gases present in combustion exhaust emissions, and gases used in technology plasma applications.They achieve this by calculating the percentage of light at a certain wavelength that is absorbed or attenuated by the sample. This way, the co...

    2024-01-11
    Посмотреть перевод
  • Beyond Limits: The Amazing Power of Water in Laser Development

    Water helps to generate ultra continuous white lasers with an extremely wide wavelength range.Researchers have made significant progress in creating ultra wideband white laser sources, which have a wide wavelength range from ultraviolet to far-infrared. These advanced lasers are used in various fields, including imaging, femtosecond chemistry, telecommunications, laser spectroscopy, sensing, and u...

    2024-02-26
    Посмотреть перевод
  • Tiny yet Powerful: How Lasers on Chips Change the Game Rules of Photonics

    Chip level ultrafast mode-locked laser based on nanophotonic lithium niobate.Researchers have created a compact mode-locked laser integrated into a nanophotonic platform, capable of generating high-power and ultrafast optical pulses. The breakthrough in miniaturization of MLL technology can significantly expand the application of photonics.Innovation in mode-locked laser technologyTo improve the t...

    2023-12-27
    Посмотреть перевод