Русский

Outlook - Future of miniaturized lasers

146
2023-12-19 18:10:39
Посмотреть перевод

The disruptive miniaturization design of fiber lasers is feeding back into the handheld laser welding market. The handheld laser welding that enters the trunk is bathed in the luster of black technology, making traditional argon arc welding and electric welding tremble.

In the early years, argon arc welding was the most commonly used thin plate welding method among our ancestors, but its drawbacks were also very obvious. The welding threshold was high, the efficiency was low, and the subsequent polishing and polishing were complex. Especially, the strong arc radiation generated was harmful to the operator's health. With the launch of miniaturized fiber lasers, the handheld laser welding market has also experienced explosive growth, and now this market has begun to take shape.

 

In the field of industrial lasers, the importance of miniaturization trends in fiber lasers is beyond doubt. We are also well aware that miniaturization has always been a turning point in every technological advancement, such as in mobile phones, computers, and semiconductors. I believe that miniaturization will also be a necessary path for the advancement of lasers. With smaller size and higher integration, it means greater portability, richer application scenarios, and greater benefits for end users.

Imagine what kind of impact the palm sized high-energy laser on Iron Man's arm would have on the entire laser manufacturing industry and even the entire technology field? To what extent will laser weapons, cutting machines, and handheld welding machines evolve? Nowadays, semiconductors and computers continue to evolve towards miniaturization. Who dares to assert that miniaturization and lightweighting of lasers are meaningless? Looking forward to breakthroughs in laser technology bringing dividends to many fields, and the future of the laser industry is promising!

Связанные рекомендации
  • The Mysteries of Atmospheric Chemistry: Transient Absorption Spectroscopy Study Using FERGIE

    backgroundDr. Daniel Stone's research team from the University of Leeds in the UK is primarily focused on the study of oxidation reactions in the atmosphere and combustion processes. Dr. Stone is particularly interested in the chemical reaction processes of active substances that can control atmospheric composition and fuel combustion processes, such as hydroxide (OH), peroxide (HO2), and Crigee i...

    2024-03-06
    Посмотреть перевод
  • Researchers have made breakthrough discoveries in the field of nanophotonics

    Researchers have made breakthrough discoveries in the field of nanophotonics. They have successfully developed a locked mode ultrafast laser using lithium niobium, a material known for its excellent optical properties. This breakthrough opens up new possibilities for revolutionary applications, including telecommunications, data storage, and ultra fast imaging.A mode-locked laser is a type of lase...

    2023-11-20
    Посмотреть перевод
  • Scientists have conducted a series of studies on the mechanical properties and flame retardancy of laser formed Ti40 flame-retardant titanium alloy

    Recently, Professor Huang Chunping's team from Nanchang University of Aeronautics and Astronautics conducted a series of studies on the mechanical and flame retardant properties of laser formed Ti40 flame retardant titanium alloy. The research team used typical Ti40 flame-retardant titanium alloy as the research object and prepared Ti40 flame-retardant titanium alloy using LSF technology. The micr...

    2023-08-15
    Посмотреть перевод
  • Chinese researchers have developed for the first time a room temperature HoYLF thin film laser

    In a study published in Optics Express, the research team led by Professor Fu Yuxi of the Xi'an Institute of Optics and Precision Mechanics (XIOPM) of the Chinese Academy of Sciences developed the room temperature holmium doped lithium yttrium fluoride (Ho: YLF) composite thin slice laser for the first time, which can achieve high efficiency and high-quality CW laser output.Laser devices operating...

    02-21
    Посмотреть перевод
  • The project cycle has been significantly shortened! Scientists use supercomputing to assist in laser fusion research

    Recently, the Laser Energy Laboratory (LLE) at the University of Rochester installed a new supercomputer to support its laser fusion experiments.The new supercomputer has increased the computing power of the laboratory by four times and shortened the time required to complete certain projects from 30 weeks to a few days.The Laser Energy Laboratory (LLE) at the University of Rochester is one of the...

    2023-10-26
    Посмотреть перевод