Русский

Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity

117
2024-02-21 14:17:01
Посмотреть перевод

Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity - a quantum cavity is an optical device composed of two excellent small mirrors that can capture light in a small area for a long time.

This model and its predictions can be used for the next generation of superradiance lasers. They can be used and observed in cutting-edge cavity/waveguide quantum electrodynamics research.

One of the most stunning and unexpected phenomena in quantum optics is superradiance. It can be understood by imaging atoms as tiny antennas that emit electromagnetic radiation or light under appropriate conditions.

On the other hand, if these atoms are very close to each other, the atomic antennas will begin to communicate with each other and thus synchronize. This leads to light emission, whose intensity increases with the square of the number of atoms.

Recently, Farokh Mivehvar studied two sets of atoms, N1 and N2, where theoretically each atom has many atoms within a quantum cavity. This study was published in the journal Physical Review Letters. The atoms in each cluster are very close to each other and can produce superradiance.

Firstly, two huge antennas create a super giant antenna that can emit more superradiance. On the other hand, in the second method, due to the destructive competition between two large antennas, superradiance light emission is suppressed.

Especially, when the number of atoms in two ensembles is equal, superradiance light emission is suppressed.
Farokh Mivehvar said, "In addition, we also found that two giant antennas emit light, which is a combination of the two types mentioned earlier and has oscillation characteristics.".

In cutting-edge cavity/waveguide quantum electrodynamics experiments, the model and its predictions can be achieved and observed. The latest generation of so-called superradiance lasers may also find applications in the discovery.

Source: Laser Net

Связанные рекомендации
  • Aerotech's next-generation laser processing technology for medical device manufacturing

    Recently, Aerotech Inc., a global leader in precision motion control and automation, launched the ultimate cylindrical laser machining motion platform LaserTurn160. LaserTurn160 is designed for unparalleled precision and efficiency, with a 40% increase in production capacity compared to similar systems, setting a new standard for medical device manufacturing. Extremely high efficiency, unparalle...

    02-08
    Посмотреть перевод
  • Comparative Study of Resistance Spot Welding and Laser Spot Welding of Ultra High Strength Steel for Vehicles

    Researchers from Annamarai University in India and South Ural State University in Russia reported a comparative study of resistance spot welding and laser spot welding of ultra-high strength steel for automobiles. The related research was published in The International Journal of Lightweight Materials and Manufacturing under the title "A comparative study on resistance spot and laser beam spot wel...

    2024-09-05
    Посмотреть перевод
  • Laser cleaning equipment manufacturer LPC receives multiple orders

    Recently, laser cleaning equipment manufacturer Laser Photonics Corporation (LPC) has disclosed multiple orders in a row.On December 26th, LPC received an order from Walsh Service Solutions to purchase a handheld laser cleaning equipment. It is understood that the manufacturer is purchasing CleanTech IR-3040, a high-performance handheld fiber laser cleaning device designed by LPC, mainly used for ...

    2024-12-31
    Посмотреть перевод
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong laser and matter, electrons with short pulse width and high energy are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite a wide range of ultrafast electromagnetic radiation, as well...

    2024-04-30
    Посмотреть перевод
  • Ultra thin two-dimensional materials can rotate the polarization of visible light

    For centuries, people have known that light exhibits wave like behavior in certain situations. When light passes through certain materials, they can change the polarization of light waves (i.e. the direction of oscillation). The core components of optical communication networks, such as optical isolators or photodiodes, utilize this characteristic. This type of component allows light to propagate ...

    2024-04-27
    Посмотреть перевод