Русский

Artificial intelligence accelerates the process design of 3D printing of metal alloys

123
2024-02-27 17:00:47
Посмотреть перевод

In order to successfully 3D print metal parts to meet the strict specifications required by many industries, it is necessary to optimize process parameters, including printing speed, laser power, and layer thickness of deposited materials.

However, in order to develop additive manufacturing process diagrams that ensure these optimal results, researchers have to rely on traditional methods, such as using off-site material characterization to test laboratory experiments on parts printed with various parameters. Testing so many parameter combinations to develop the best process may be time-consuming and expensive, especially considering the various metals and alloys available for additive manufacturing.

David Guirguis, Jack Beuth, and Conrad Tucker from the Department of Mechanical Engineering at Carnegie Mellon University have developed a system that utilizes ultra high speed in situ imaging and visual transformers. This system not only optimizes these process parameters, but also has scalability, making it applicable to various metal alloys.

Their research findings are published in the journal Nature Communications.
Visual converter is a form of machine learning that applies neural network architectures originally developed for natural language processing tasks to computer vision tasks, such as image classification. The video visual converter goes further by using video sequences instead of still images to capture spatial and temporal relationships, enabling the model to learn complex patterns and dependencies in video data.

The self attention mechanism allows natural language processing models to balance the importance of different words in a sequence, and allows models created by Guirguis to balance the importance of different parts of the input sequence to predict the occurrence of defects.

"We need to automate this process, but it cannot be achieved solely through computer programming," explained Guirguis, a postdoctoral researcher in mechanical engineering. To capture these patterns, we need to apply machine learning.

"We are pleased to have developed an artificial intelligence method that utilizes the temporal characteristics of additive manufacturing imaging data to detect different types of defects. This demonstrates the groundbreaking generalizability of AI methods using different AM metals and reveals that the same trained AI model can be used without the need for expensive retraining with additional data," commented Professor Tucker of Mechanical Engineering.

Guirguis said he is fortunate to have received such powerful machine learning training at Carnegie Mellon University because mechanical engineers know how to apply experimental and computational solutions to the problems they solve, which is more important than ever before.

In this case, Guirguis attempts to overcome the main limitations of in-situ imaging in laser powder bed melt additive manufacturing processes. This technology uses high-power laser as an energy source to melt and melt powder at specific locations to form certain shapes, then a new layer of powder is spread out by a recoating machine, and the process is repeated until a 3D object is formed.

However, during the printing process, the molten metal seen by the camera is saturated, so its physical characteristics cannot be seen, which can identify defects that may reduce mechanical performance and fatigue life of printed parts.

Source: Laser Net

Связанные рекомендации
  • The wide application of laser plastic welding technology in the field of automobile manufacturing

    With the rapid development of society, people's demands for energy conservation, emission reduction, and safety in automobiles are increasing. Automobile manufacturers are seeking lightweight manufacturing processes for automobiles, changing traditional component packaging processes, and so on. Laser plastic welding technology has emerged, and below is a brief sharing of the application of plastic...

    2024-09-26
    Посмотреть перевод
  • Developing miniaturized laser technology: This company has secured $5 million in financing

    Recently, high-performance laser supplier Skylark Lasers announced that it has raised $5 million in investment to further advance its efforts in miniaturized laser technology.Skylark Lasers is established at the center of the Scottish Photonics Cluster, focusing on the design and production of compact diode pumped solid-state (C-DPSS) lasers with the purest spectral characteristics, providing high...

    2023-11-02
    Посмотреть перевод
  • The official launch of FV4000 and FV4000MPE microscopes aims to redefine scientific imaging

    Introduction to FLUOVIEW ™ The FV4000 confocal laser scanning microscope and FV4000MPE multiphoton laser scanning microscope have made breakthroughs in imaging technology, enabling researchers to make new scientific discoveries. The FV4000 and FV4000MPE microscopes aim to redefine scientific imaging, providing higher accuracy, lower noise, and higher sensitivity, setting new standards for im...

    2023-11-03
    Посмотреть перевод
  • Han's Laser New Product Debuts at 2025 Munich Shanghai Light Expo

    New product launch of "Blue Hurricane" red blue integrated laser1. Ultra high power: The "red blue integrated" laser, with optimized optical path design and heat dissipation system, can stably output power exceeding industry standards, meeting high demand application scenarios.2. Dual high brightness: Integrating advanced wavelength modulation technology and materials science, both red and blue l...

    03-07
    Посмотреть перевод
  • Defects and solutions that are prone to occur when laser welding square shell battery explosion-proof valves for power batteries

    For example, the commonly used square shell battery cells for power batteries include laser welding of cover explosion-proof valves, laser welding of pole columns, and laser welding of cover plates and shells. During the process of laser welding of aluminum alloy, it is easy to generate unqualified phenomena such as explosion points, pores, welding cracks, excessive depth and width of fusion. ...

    2023-09-15
    Посмотреть перевод