Русский

Scientists propose new methods to accelerate the commercialization of superlens technology

127
2024-03-29 14:51:52
Посмотреть перевод

Superlenses are nano artificial structures that can manipulate light, providing a technique that can significantly reduce the size and thickness of traditional optical components. This technology is particularly effective in the near infrared region, and has great prospects in various applications, such as LiDAR, which is called "the eye of autonomous vehicle", mini UAV and blood vessel detector.

Despite its potential, current technology requires tens of millions of Korean won to manufacture nail sized superlenses, which poses a challenge to commercialization. Fortunately, a recent breakthrough indicates that its production costs are expected to decrease by one thousandth in price.

A collaborative research team composed of Professor Junsuk Rho from the Department of Mechanical Engineering and the Department of Chemical Engineering at Pohang University of Science and Technology has proposed two innovative methods for large-scale production of superlenses and manufacturing them on large surfaces. Their research is published in the Review of Laser and Photonics.

Lithography is a process of manufacturing a superlens by printing patterns on a silicon wafer using light. Usually, the resolution of light is inversely proportional to its wavelength, which means that shorter wavelengths lead to higher resolution, allowing for the creation of finer and more detailed structures. In this study, the team chose deep ultraviolet lithography technology, which is a process that uses shorter wavelengths of ultraviolet light.
The research team recently achieved large-scale production of visible light region superlenses using deep ultraviolet lithography technology, which was published in the journal Nature Materials. However, due to the low efficiency of existing methods in the infrared region, challenges have arisen.

To address this limitation, the team developed a material with high refractive index and low infrared region loss. This material was integrated into the established large-scale production process, resulting in the successful manufacture of a relatively large infrared superlens with a diameter of 1 centimeter on an 8-inch wafer.

It is worth noting that this lens has an excellent numerical aperture of 0.53, highlighting its excellent light gathering ability and high resolution close to the diffraction limit. The cylindrical structure further ensures excellent performance without being affected by polarization, regardless of the direction of light vibration.

In the second method, the team employed nanoimprinting, a process that allows for the use of molds to print nanostructures. This process utilizes the knowledge of nanoimprinting technology accumulated through collaborative research with RIT.

This effort has been proven successful as the team managed to mass produce a 5-millimeter diameter superlens composed of approximately 100 million rectangular nanostructures on a 4-inch wafer. It is worth noting that this type of superlens exhibits impressive performance, with an aperture of 0.53. Its rectangular structure exhibits polarization dependence and can effectively respond to the direction of light vibration.

On the basis of this achievement, the team integrated a high-resolution imaging system to observe real samples such as onion skins, verifying the possibility of commercializing superlenses.

This study is of great significance as it overcomes the limitations of traditional individual production processes for superlenses. It not only helps to create optical devices with polarization dependence and independent characteristics, tailored for specific applications, but also reduces the production cost of superlenses by up to 1000 times.
Professor Junsuk Rho said, "We have achieved precise and rapid production of wafer level high-performance superlenses, reaching the centimeter level. Our goal is to accelerate the industrialization of superlenses and promote the advancement of efficient optical devices and optical technology through this research.".

Source: Laser Net

Связанные рекомендации
  • Progress in Theoretical Research on the Mechanism of Liquid Terahertz Wave Generation by Precision Measurement Institute

    Terahertz waves have significant application value in communication and imaging. The nonlinear interaction between strong field ultrafast laser and matter is one of the important ways to generate terahertz waves. The experimental and theoretical research related to terahertz generation media such as plasma, gas, and crystal is relatively sufficient. However, liquid water is a strong absorbing medi...

    2024-03-22
    Посмотреть перевод
  • Teledyne Technologies acquires a portion of its optoelectronic business

    Recently, Teledyne Technologies announced that it has reached an agreement to acquire a portion of Excelitas Technologies' aerospace and defense electronics business for $710 million in cash.This acquisition includes the optical systems business under the Qioptiq brand headquartered in North Wales, UK, as well as the Advanced Electronic Systems (AES) business headquartered in the United States.It ...

    2024-11-12
    Посмотреть перевод
  • Synchrotron X-ray imaging technology

    According to a recent study published in the journal Science Advances, it reveals how early mammals grew and developed during critical periods of their long 'life history'. A research team including Queen Mary University of London used synchrotron X-ray tomography technology to image the growth rings in fossilized tooth roots, in order to infer the lifespan, growth rate, and even sexual maturity t...

    2024-08-15
    Посмотреть перевод
  • Alliance unit Hongshan Laser has released multiple "heavyweight" new products such as heavy-duty pipe cutting machines, ushering in the era of "laser+"

    On September 19th, Hongshan Laser made a stunning appearance at the Shanghai Industrial Expo with multiple flagship products. Among them, the "4+1" fully free heavy-duty groove laser pipe cutting machine TL730S, the 6G fully direct drive laser cutting machine G4020V, and the flagship drilling and attacking integrated laser composite pipe cutting machine TP65SD, represented by three new products, v...

    2023-09-21
    Посмотреть перевод
  • BOFA launches the latest generation of high-temperature 3D printing filtration technology

    BOFA has consolidated its position as a market leader in additive manufacturing of portable smoke and particle filtration systems with the latest generation of 3D PrintPRO technology designed specifically for high-temperature processes.3D PrintPRO HT focuses on the 230V market and can filter high-temperature particles, gases, and nanoparticles emitted during polymer processing in the printing room...

    2024-04-15
    Посмотреть перевод