Русский

Shanghai Optical Machinery Institute has made progress for the first time in hard X-ray zoom beam imaging

178
2024-04-08 15:04:58
Посмотреть перевод

Recently, the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, completed the research of hard X-ray zoom beam splitting imaging on the micro focus X-ray source for the first time, and solved the problem of beam splitter limitation in the hard X-ray band. The related achievements are titled "Bifocal photo scene imaging in the hard X-ray region" and published in Optics Letters.

The Fresnel zone plate was proposed in 1818 and successfully applied in X-ray focusing research in the 1960s. The emergence of photonic screens in 2001 provided a device choice for high-performance focusing of X-rays beyond zone plates. However, traditional zone plates and photon sieves have single focal characteristics and cannot meet the beam splitting requirements of shortwave diffraction imaging and interferometric sensing. With the solution of the problem of high coherence shortwave light sources, the demand for X-ray beam splitters has become more urgent.

Researchers used the ancient Greek ladder sequence to encode traditional photon sieves and optimized the design of a hard X-ray bifocal photon sieve. With the help of Professor Chen Yifang's research group at Fudan University, the device was processed and tested, as shown in Figure 1. By using copper foil to filter the microfocal X-ray source, a spectral line with a half width of 0.0242 keV and a center of 8.39 keV was obtained, with the X-ray source mainly concentrated at 7.38 keV, 8.39 keV, 9.67 keV, 9.96 keV, and 11.29 keV. On this basis, equal size imaging experiments were conducted on the dual focus photon sieve, which were recorded by X-ray CCD, as shown in Figures 2 and 3. The experimental results show that regardless of whether it is long focus or short focus imaging, the images recorded by the detector during the forward and backward movement process first decrease and then increase, fully proving that the dual focus photon screen achieves zoom beam splitting imaging. The emergence of hard X-ray beam splitters has expanded new development space for applications such as variable resolution diagnosis of laser plasma, X-ray microscopy, and beam splitting coherent diffraction imaging.

The relevant work has been supported by the National Natural Science Foundation of China, the Chinese Academy of Sciences strategic leading science and technology special category A and other projects.

Figure 1: Double focal photon sieve, (a) under optical microscope, (b) under scanning electron microscope, (c) under minimum hole, (d) under gold height

Figure 2 Experimental results of telephoto imaging, where (a-i) the detector gradually approaches the image plane and then moves away from it

Figure 3 Experimental results of short focus imaging, (a-c) detector gradually approaches the image plane and then moves away from the image plane

Source: Shanghai Institute of Optics and Mechanics

Связанные рекомендации
  • China University of Science and Technology realizes millisecond level integrated quantum memory

    Recently, the team led by Academician Guo Guangcan from the University of Science and Technology of China has made significant progress in the field of integrated quantum storage. The research team led by Li Chuanfeng and Zhou Zongquan has improved the storage time of integrated quantum memory from 10 microseconds to milliseconds based on their original noiseless photon echo (NLPE) scheme, while s...

    03-31
    Посмотреть перевод
  • Researchers have developed a QCL DFB continuous laser for gas detection

    Alpes Laser was founded in 1998 in Nazhatel, Switzerland and was the first company to bring quantum cascade lasers to the market. It released its first continuous laser in 2001 and its first high gain laser in 2009, thus maintaining this priority position.In 2004, the first commercial laser was introduced.Principle: In a single mode laser, the grating is etched into the active region to force the ...

    2023-08-16
    Посмотреть перевод
  • Ultra fast laser tracking the "ballistic" motion of electrons in graphene

    Figure 1. The setup of Hui Zhao and his team at the University of Kansas Ultra Fast Laser Laboratory.A team of researchers from the University of Kansas's ultrafast laser laboratory recently managed to capture real-time ballistic transmission of electrons in graphene, which could lead to faster, more powerful, and more energy-efficient electronic devices in the future.The motion of electrons is of...

    2024-01-09
    Посмотреть перевод
  • CO2 laser cutting machine for battery shell shaped parts: an innovative tool in energy technology manufacturing

    The development of new energy technology has made battery technology the engine for advancing clean energy. In battery manufacturing, the cutting of battery shell shaped parts is a crucial step. CO2 laser cutting machines have become an innovative tool for promoting the development of this field due to their high efficiency and precision. This article will delve into the important characteristics ...

    2023-12-25
    Посмотреть перевод
  • Atomstack leads the new track of intelligent laser engraving

    In today's rapidly developing technology, laser engraving technology is like a mysterious magician, constantly demonstrating amazing skills. In this field full of creativity and competition, Atomstack stands out with its outstanding technology and innovative spirit, becoming a leader in the new track.As the only enterprise in the semiconductor laser engraving machine industry with an annual shipme...

    2024-11-15
    Посмотреть перевод