Русский

Shanghai Optics and Machinery Institute has made new progress in evaluating the anti laser damage performance of thin film optical components using different laser damage testing protocols

137
2024-04-25 15:37:13
Посмотреть перевод

Recently, the research team of the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made new progress in evaluating the laser damage resistance and damage mechanism of 532nm thin film polarizers using different laser damage test protocols. The related achievements were published in Optical Materials under the title "Nanosecond laser damage of 532? Nm thin film polarizers evaluated by different testing protocols".

Thin film polarizers can transmit P-polarized light and reflect S-polarized light, playing an important role in high-power laser systems. 1064 nm thin film polarizers are commonly used as optical switches and isolators in large laser systems, such as the National Ignition Facility (NIF) in the United States, OMEGA EP laser systems, Laser Megajoule, and SG II-UP devices. But with the development of high-power shortwave lasers, in order to solve the problem of limited resistance to laser damage in shortwave thin film optical components, polarization beam combining technology has been introduced. However, laser damage assessment of second and third harmonic polarizers is also crucial.

At present, laser damage testing protocols mainly include 1-on-1, S-on-1, Raster scan, R-on-1, and N-on-1. The 1-on-1 laser damage test is to apply a single pulse laser to each test point on the sample to study the initial damage morphology of optical components. The S-on-1 laser damage test is the process of irradiating multiple laser pulses at the same testing point to evaluate the cumulative effects and lifespan of optical components under long-term use. The Raster scan laser damage test scans a 1 cm2 area of the sample with the same energy density and can be used to detect discrete low-density defects in the film layer. When the testable area of the sample is limited, R-on-1 laser damage testing can be chosen to determine the damage threshold. This testing method uses progressively increasing laser energy density to irradiate the same test point. Reducing the number of steps in laser energy density can simplify R-on-1 testing to N-on-1 testing. The use of different laser damage testing protocols helps to identify the sources of damage in thin film optical components, identify potential mechanisms of thin film failure, and provide reference for improving the preparation process of thin film optical components.

The research team evaluated the laser damage resistance of 532 nm thin film polarizers under different polarization states using 1-on-1, S-on-1, and Raster scan laser damage testing protocols. The damage threshold of thin film polarizers prepared by electron beam evaporation under P-polarized light is significantly lower than that under S-polarized light. Under P-polarized light, the 1-on-1 and S-on-1 zero probability damage thresholds of the 532 nm polarizer are very close. Through damage morphology characterization, the damage of the sample under P-polarization is mainly caused by flat bottomed pits caused by structural defects at the interface between the substrate and the film layer, and shell shaped damage caused by sub surface damage of fused silica, both of which are very stable. Under S-polarized light, the damage threshold of S-on-1 is lower than that of 1-on-1, resulting in cumulative effects. The main damage morphology is incomplete jet nodule damage pits, and the damage caused by absorption defects is also manifested under multi pulse laser irradiation. The Raster scan zero damage threshold under two types of polarized light is the lowest, indicating that for thin film polarizers, defect density and film layer quality are the key limiting factors affecting their resistance to laser damage performance.
The research was supported by the foreign cooperation project of the Bureau of International Cooperation of the Chinese Academy of Sciences and the Scientific and Technological Research Council of Türkiye.

Figure 1.5Comparison of laser damage thresholds and typical damage morphology of 32 nm thin film polarizers

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Связанные рекомендации
  • Tailoring 'hollow' hydrogen molecule generation with two-color, bicircularly polarized laser pulses

    Rydberg atoms and molecules are characterized by having one or more electrons in highly excited bound states. Such atoms and molecules are said to be in “Rydberg states” and are also called “hollow” atoms and molecules. Rydberg states are useful for studying various phenomena arising in intense light–matter interaction that involve electronic excitation with an intens...

    2023-09-16
    Посмотреть перевод
  • Shanghai Institute of Optics and Fine Mechanics has achieved beam splitting vortex control and interference detection for the first time in the 46.9nm wavelength band

    Recently, Associate Researcher Zhang Junyong from the High Power Laser Physics Joint Laboratory of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, together with Professor Zhao Yongpeng's research group from Harbin Institute of Technology and Professor Zhan Qiwen's research group from Shanghai University of Technology, completed the experimental verification of 46....

    2024-10-17
    Посмотреть перевод
  • Laserline introduces the first blue 4 kW laser

    Laserline will once again showcase its latest laser systems for joining and deposition welding at this year's Welding & Cutting show in Hall 5. This time the focus is on the world's first blue diode laser with an output power of 4 kW, which is said to have been developed for processing copper components.Its 445 nanometer wavelength is absorbed by copper and copper alloys, which is five t...

    2023-09-06
    Посмотреть перевод
  • Fiber laser array for single pixel imaging is expected to achieve remote detection

    Single pixel imaging (SPI) is a novel computational imaging technique that has been widely studied in recent years. This technology only uses single pixel detectors without spatial resolution to obtain spatial information of targets.It has unique advantages and compensates for the shortcomings of traditional imaging technologies based on array detectors, such as relatively immature or expensive ar...

    2024-05-15
    Посмотреть перевод
  • Silicon Valley giants compete for a new 3D printing space race track

    Recently, Eric Schmidt, former CEO of Google, will take over as CEO of Relativity Space, marking his first CEO position since leaving Google.Relativity Space is known for producing rockets using unusual technologies, including 3D printers, automated robots, and artificial intelligence. In 2023, Relativity Space successfully launched the Terran 1 rocket, proving that its 3D printing technology can ...

    03-24
    Посмотреть перевод