Русский

New nanophotonic circuits demonstrate the potential of quantum networks

128
2024-08-14 11:21:40
Посмотреть перевод

The Purdue University team in the United States has captured alkali metal atoms (cesium) in integrated photonic circuits, which can serve as transistors for photons (the smallest energy unit of light). These captured atoms demonstrate for the first time the potential of cold atom integrated nanophotonic circuits to construct quantum networks. The research results were published in the latest issue of Physical Review X.

The newly developed technology utilizes laser cooling to capture atoms in integrated nanophotonic circuits. Light propagates through a tiny photon "line" (a waveguide that is 1/200 thinner than a human hair). These atoms are frozen to minus 273.15 degrees Celsius and are essentially in a static state. At such low temperatures, atoms can be captured by a pulling beam aimed at a photonic waveguide and placed at a distance much shorter than the wavelength of light (approximately 300 nanometers). Within this distance, atoms can effectively interact with photons in the photonic waveguide.

Researchers are conducting experiments
Using the most advanced nanomanufacturing instruments, the team designed a photonic waveguide into a circular structure with a diameter of approximately 30 microns, forming a so-called micro ring resonator. Light will circulate within the micro ring resonator and interact with the captured atoms.

This atomic coupled micro ring resonator is like a transistor for photons. People can use these captured atoms to control the flow of light through circuits. If atoms are in the correct state, photons can be transmitted through circuits. If the atom is in another state, photons will be completely blocked. The stronger the interaction between atoms and photons, the more effective the "gate" of passage and obstruction.

The team captured up to 70 atoms, coupling them all to photons and controlling their transmission on an integrated photonic chip, achieving a "collective" high-intensity interaction with light.

This research result can provide photon links for future distributed quantum computing based on neutral atoms. It can also serve as a new experimental platform for studying light matter interactions or ultra cold molecules.

Source: Opticsky

Связанные рекомендации
  • Scientists decipher the code for extending the lifespan of perovskite solar technology

    The latest research led by the University of Surrey shows that alumina (Al2O3) nanoparticles can significantly enhance the lifespan and stability of perovskite solar cells, extending the service life of such high-efficiency energy devices tenfold.Although perovskite solar cells have advantages such as low cost and light weight compared to traditional silicon-based technologies, their commercial po...

    03-03
    Посмотреть перевод
  • Breakthrough in Silicon Based Room Temperature Continuous Wave Topological Dirac Vortex Microcavity Laser

    With the explosive growth of data traffic, the market is extremely eager for hybrid photonic integrated circuits that can combine various optical components on a single chip.Silicon is an excellent material for photonic integrated circuits (PICs), but achieving high-performance laser sources in silicon still poses challenges. The monolithic integration of III-V quantum dot (QD) lasers on silicon i...

    2023-10-26
    Посмотреть перевод
  • Technology Frontiers | What is the Next Generation Laser?

    Since the 1960s, lasers have brought revolutionary changes to the world and have now become an indispensable tool in modern applications, from cutting-edge surgical procedures and precision manufacturing to fiber optic data transmission. However, with the increasing demand for laser applications, challenges have also arisen. For example, the market for fiber lasers is constantly expanding, mainly ...

    2024-06-21
    Посмотреть перевод
  • Relevant teams of the Chinese Academy of Sciences breakthrough the application difficulties of ultra compact gas laser system in special scenarios

    Recently, Liang Xu's team from the Laser Center of Anguang Institute, Chinese Academy of Sciences, Hefei Institute of Materia Medica, conducted research on corona discharge fluid control and its application in the gas laser system, proposed an electric field flow field coupling analysis model suitable for multi pin corona discharge scenarios, and revealed the flow velocity distribution characteris...

    2024-07-20
    Посмотреть перевод
  • The University of Rochester has received nearly $18 million to build the world's highest power laser system

    After receiving a $14.9 million contract from the US Department of Defense (DOD) last month to study the pulse laser effect, the University of Rochester recently received nearly $18 million in funding from the National Science Foundation (NSF) for the key technology design and prototype of the EP-OPAL, also known as the OMEGA EP coupled optical parametric amplifier line (OPAL).EP-OPAL is a new fac...

    2023-09-28
    Посмотреть перевод