Русский

The Boston University research team developed a high-throughput single-cell sorting technique based on stimulated Raman spectroscopy

504
2023-09-07 14:47:36
Посмотреть перевод

A Boston University research project has successfully developed an innovative single-cell sorting technique that uses stimulated Raman spectroscopy to replace traditional fluorescent labeling and achieve labeling free and non-destructive single-cell measurements.

This technology is expected to have a profound impact in the fields of cytology, microbiology and biomedical research, allowing scientists to directly capture pathogens or cells with specific metabolic characteristics from the natural environment.

Stimulated Raman is used to separate cells

Research background

Flow cytometry is a well-established technique for counting and characterizing cells, including blood cells, stem cells, and cancer cells in biomedicine. The idea is to illuminate the cells as they pass through a channel narrow enough to force them to roughly line up, usually after labeling them with a fluorescent label.

This technique typically uses fluorescent labeling to distinguish and identify different types of cells, as fluorescent labeling allows scientists to determine a cell's identity by detecting the fluorescent signal it emits. Then, by analyzing these signals, high-throughput single-cell sorting and analysis can be performed.

However, traditional flow cytometry has some disadvantages, one of which is that fluorescent labeling may affect the biological activity of cells and require additional experimental steps. Therefore, researchers have been looking for labeling free and non-invasive methods for single cell measurement and sorting, and stimulated Raman spectroscopy is one of the innovative directions.

Stimulated Raman spectroscopy

The Boston University research team used stimulated Raman spectroscopy, an innovative approach that allows individual cells to be measured for their unique chemical fingerprints without the need for fluorescent labeling. The technique utilizes a 532 nm laser monopulse to focus light on the target cell and push it into the collector, enabling high-throughput single-cell sorting.

Experimental result

In experiments, the technique was applied to a mixture of 1 micron polymer beads, which were sorted approximately 14 times per second, achieving approximately 95% purity and 98% throughput. The technique can also be used for sorting fixed bacteria. In addition, tests on active yeast cells showed that the sorted cells were still able to maintain healthy growth.

Application prospect

The new stimulated Raman spectral sorting technique provides scientists with an innovative, high-throughput way to classify cells based on their chemical composition within them. This has broad applications for microbiology, biomedical research, and the direct capture of pathogens or cells with specific metabolic characteristics from the natural environment. This technology is expected to advance the development of cytology, microbiology and biomedical research, providing new tools and methods for medical diagnosis and life science research.

Source: Chinese Optical Journal Network

Связанные рекомендации
  • Halloween\Christmas Laser Processing Art Carnival !!

    Chanelink Halloween\Christmas Laser Processing Art CarnivalShow your design talent and win a cool laser engraver cutter.TimeUpload of work and canvassing period: October 25, 2023 - December 25, 2023Winner announcement time : December 29, 2023ContentEligible participant:Laser industry practitioners, enthusiasts, who must be at least 18 years old.Awards:First prize (1...

    2023-10-25
    Посмотреть перевод
  • An efficient femtosecond pulse amplification technique for extracting the maximum stored energy in fiber laser amplifiers

    The well-known journal Optica published a paper in November 2024 titled "Near complete extraction of maximum stored energy from large core fibers using coherent pulse stacking amplification of femtosecond pulses"The authors of the paper were the University of Michigan, Lawrence Berkeley National Laboratory, Peking University, and the German Institute of Synchrotron Radiation.The specific technique...

    2024-11-13
    Посмотреть перевод
  • Vector Photonics accelerates the commercialization of PCSEL laser technology

    Recently, Vector Photonics, a well-known surface coupled laser technology supplier in the UK, announced that the company has received £ 3 million in financing (including £ 1.667 million in equity investment and £ 1.27 million in additional research funding, equivalent to approximately RMB 27.63 million) to help commercialize its surface coupled laser technology.(Image source: Vector Photonics)Vect...

    2024-07-04
    Посмотреть перевод
  • Research progress on aerospace materials and anti ablation coatings: a review

    India B R. Dr. Jalandal Ambedkar National Institute of Technology and the Indian Institute of Technology reviewed and reported on the research progress of aerospace materials and anti ablation coatings. The related paper was published in Optics&Laser Technology under the title "Progress in aerospace materials and ablation resistant coatings: A focused review".a key:1. A comprehensive overview ...

    2024-11-21
    Посмотреть перевод
  • Diffractive optical elements: the behind the scenes hero of structured light laser technology

    In today's rapidly developing technological era, structured light laser technology has become an important tool in the fields of 3D measurement and image capture. The core of this technology lies in a magical device called Diffractive Optical Elements (DOE), which can precisely control and shape laser beams, creating various complex light patterns. But what exactly is DOE? How does it work? Let Ho...

    2024-04-10
    Посмотреть перевод