Türkçe

China University of Science and Technology realizes millisecond level integrated quantum memory

99
2025-03-31 15:52:20
Çeviriyi gör

Recently, the team led by Academician Guo Guangcan from the University of Science and Technology of China has made significant progress in the field of integrated quantum storage. The research team led by Li Chuanfeng and Zhou Zongquan has improved the storage time of integrated quantum memory from 10 microseconds to milliseconds based on their original noiseless photon echo (NLPE) scheme, while successfully breaking through the efficiency of traditional fiber delay lines. The achievement was published on March 26th in the internationally renowned academic journal Science Progress.


As a core device for overcoming channel loss and building large-scale quantum networks, the large-scale application of optical quantum memory requires the integration of devices to achieve the goal of small size and low power consumption. Since 2011, various processes have been used internationally to prepare integrated quantum memories in rare earth doped crystals. However, due to the difficulty in filtering out noise and limited storage efficiency in integrated devices, existing devices can only achieve storage in atomic excited states, with a storage time of only 10 microseconds. The storage efficiency is far lower than the transmission efficiency of fiber delay lines, fundamentally limiting their practical application in remote quantum communication.

To solve this problem, the research group of Li Chuanfeng and Zhou Zongquan used femtosecond laser microfabrication technology to prepare circularly symmetrical concave cladding optical waveguides in europium doped yttrium silicate crystals, achieving noise filtering based on polarization degrees of freedom. Combined with the team's original NLPE quantum storage solution, the storage efficiency was greatly improved, thus achieving spin wave integrated quantum storage in the atomic ground state [National Science Review 12, nwae 161 (2024)].

Recently, the team integrated a coplanar waveguide on the surface of a crystal and achieved dynamic decoupling control of the spin transition of europium ion nuclei within the waveguide by applying a radio frequency magnetic field, thereby extending the spin wave quantum storage lifetime to the millisecond level. When the storage time of optical qubits reaches 1.021 milliseconds, their storage efficiency reaches 12.0 ± 0.5%, which far exceeds the transmission efficiency of the corresponding delay fiber delay line (only 0.01%), fully proving that integrated quantum storage devices are no longer functionally replaceable by fiber delay lines.


Figure 1. Schematic diagram of long-life integrated quantum storage experiment, illustrating the details of the incident end face of the memory.

 



Figure 2. Efficiency and lifetime performance of integrated quantum memory. The performance of fiber optic delay lines is represented by blue dashed lines, and the red pentagram represents the performance of this achievement.

This work has increased the lifespan of integrated quantum memory from 10 microseconds to milliseconds, achieving a breakthrough in storage efficiency beyond fiber delay lines for the first time, laying a solid foundation for the practical application of integrated quantum storage in long-range quantum networks. At the same time, this achievement demonstrates the enormous potential of NLPE solutions in solving the signal-to-noise ratio problem of long-lived quantum storage. The reviewer highly praised: 'This is a very important achievement in the field of integrated quantum memories', “this work makes a significant contribution to the development of integrated and long-duration quantum memories”( This work has made significant contributions to the development of integrated and long-lived quantum memories.

The first author of this paper is Liu Yuping, a doctoral student in the Key Laboratory of Quantum Information, Chinese Academy of Sciences. This work has been supported by the Science and Technology Innovation 2030 Major Project, the National Natural Science Foundation of China, Anhui Province and the Chinese Academy of Sciences. Zhou Zongquan was supported by outstanding members of the Youth Innovation Promotion Association of the Chinese Academy of Sciences.

Source: opticsky

İlgili öneriler
  • The output power of high power femtosecond laser breaking through the key bottleneck of average power can reach the order of 100 watts

    High energy, high average power femtosecond laser due to the attosecond high order harmonic generation, precision processing and manufacturing, biomedical and national defense and other fields of extensive application needs, is the forefront of ultrafast super laser technology research in the past decade.Especially fiber laser due to stable and reliable operation characteristics, compact structure...

    2023-09-04
    Çeviriyi gör
  • Scientists decipher the code for extending the lifespan of perovskite solar technology

    The latest research led by the University of Surrey shows that alumina (Al2O3) nanoparticles can significantly enhance the lifespan and stability of perovskite solar cells, extending the service life of such high-efficiency energy devices tenfold.Although perovskite solar cells have advantages such as low cost and light weight compared to traditional silicon-based technologies, their commercial po...

    03-03
    Çeviriyi gör
  • Artificial intelligence accelerates the process design of 3D printing of metal alloys

    In order to successfully 3D print metal parts to meet the strict specifications required by many industries, it is necessary to optimize process parameters, including printing speed, laser power, and layer thickness of deposited materials.However, in order to develop additive manufacturing process diagrams that ensure these optimal results, researchers have to rely on traditional methods, such as ...

    2024-02-27
    Çeviriyi gör
  • FGI utilizes Fraunhofer's LiDAR technology for maritime surveying

    The highly respected Finnish Institute of Geospatial Studies will utilize the advanced LiDAR system developed by the Fraunhofer Institute of Physical Measurement Technology for future ocean surface surveys. Significant progress is expected in data quality and on-site measurement efficiency, and the state-owned research department is collaborating with Fraunhofer IPM on a joint project. They are jo...

    2024-02-14
    Çeviriyi gör
  • Composite two-dimensional materials for fiber lasers demonstrate the prospects of ultra fast optical applications

    The formation of dissipative solitons is influenced by various factors, such as spectral filtering effect and Kerr nonlinearity effect. This interaction leads to the possibility of mode locking on a large range of parameters, generating pulses with completely different types and evolution from conventional physical laws and optical properties, tolerating higher nonlinear effects, and effectively a...

    2023-09-21
    Çeviriyi gör