Türkçe

Uncovering the Secrets of Nature: A New Generation of X-ray Lasers Reveals the Mystery of Atoms

85
2023-09-25 14:48:44
Çeviriyi gör

As a breakthrough leap in scientific exploration, the new generation of powerful X-ray lasers is now targeting the fastest and most basic processes in nature. Their mission: to uncover the complex atomic arrangement that drives these phenomena, providing unprecedented insights into chemical reactions, electronic behavior in materials, and the mysteries of the natural world.

Unlocking the precise mechanisms by which atoms participate in chemical reactions and electronic navigation materials can provide valuable knowledge for scientists seeking to replicate the extraordinary feats and efficiency of nature. From simulating the energy conversion process in plants to utilizing the unique characteristics of minerals to provide power for our electronic products, it has a wide range of applications and is transformative.

Professor Matthias Kling of Photonics at Stanford University affirmed the importance of this effort. He said in an interview with Axios, "We will be able to conduct experiments that were previously impossible. This information can be obtained through X-rays similar to lasers, and cannot be obtained through any other means.

The spotlight shines on the world's most powerful X-ray laser, marking a historic milestone recently. The Linear Accelerator Coherent Light Source (LCLS-II) X-ray Free Electron Laser (XFEL) at the SLAC National Accelerator Laboratory launched its first pulse last week, heralding a new era of scientific exploration.

The miracle of this upgraded version can release nearly 1 million X-ray flashes per second, which is an astonishing leap compared to its predecessor, with a power increase of nearly 8000 times. SLAC, with the support of Stanford University and the support of the Department of Energy, is the driving force behind this breakthrough progress.

The clever mechanism behind this scientific miracle involves pushing electrons to speeds close to the speed of light. Once in motion, these electrons will be cleverly manipulated to emit X-rays.

These high-energy X-ray pulses can be cleverly focused on tiny targets, providing a delicate and detailed window for the molecular world. These snapshots, combined together, can produce vivid movie sequences that showcase the complex dance of molecular interactions.

Breaking through the boundaries of cold
The originality of LCLS-II goes beyond that. The instrument uses superconductors and is cooled to a chilling 2 Kelvin temperature, which is even colder than the vast outer space. This cold environment is conducive to electrons accelerating with unparalleled accuracy and control along a 2-kilometer long tunnel.

Furthermore, LCLS-II's ambition goes beyond producing "low energy" X-rays. Plans are underway to enhance the instrument's capabilities to produce "hard" X-rays. The wavelengths of these hard X-rays are comparable to the distance between two bonded atoms, which is expected to reveal the complex details of atomic bonds and their angles between them.

In the intersection of cutting-edge technology and scientific curiosity, LCLS-II has opened up new fields for us to explore and control the atomic complexity of the natural world. Every X-ray flash beckons us one step closer to unraveling the deepest mysteries of nature.

Source: Laser Network

İlgili öneriler
  • E&R Engineering launches a mold cutting solution at Semicon SEA 2024

    Advanced laser and plasma solution provider E&R Engineering Corp. has confirmed that they will participate in the Semiconductor SEA 2024 event held in Kuala Lumpur, Malaysia. With 30 years of focus in the semiconductor industry, E&R has developed a wide range of plasma and laser technologies. At Semicon SEA 2024, they will showcase their latest solutions, including:Plasma Cutting - Small M...

    2024-05-20
    Çeviriyi gör
  • Launching the world's strongest laser at a cost of 320 million euros

    Beijing, April 1st (Reporter Liu Xia) - The world's most powerful laser has been activated recently. On March 31st, the Physicist Organization Network reported that the system can enable laser pulses to reach a peak of 10 terawatts (1 terawatt=100 terawatts=1015 watts) within 1 femtosecond (1000 trillions of a second), which is expected to promote revolutionary progress in multiple fi...

    2024-04-03
    Çeviriyi gör
  • Shanghai Optics and Machinery Institute has made new progress in evaluating the anti laser damage performance of thin film optical components using different laser damage testing protocols

    Recently, the research team of the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made new progress in evaluating the laser damage resistance and damage mechanism of 532nm thin film polarizers using different laser damage test protocols. The related achievements were published in Optical Materi...

    2024-04-25
    Çeviriyi gör
  • More penetrating than X-rays μ Meson imaging is expected to be advanced with high-power lasers

    μ Mesons are naturally occurring subatomic particles that can penetrate much deeper dense matter than X-rays. Therefore, μ Meson imaging can enable scientists to capture images of nuclear reactors, volcanoes, tsunamis, and hurricanes. However, this process is slow, as it occurs naturally μ The low flux of mesons requires several months of exposure time for the image.It is understood that ...

    2023-11-01
    Çeviriyi gör
  • Laser solder paste: comprehensive analysis of working principle and application fields

    Laser solder paste is a new type of high-tech laser soldering material that is widely used. Laser solder paste achieves high-precision control of circuit board soldering through laser heating in the electronic manufacturing process. This article will provide a detailed introduction to the working principle of laser solder paste and its applications in fields such as electronic manufacturing and au...

    2024-04-11
    Çeviriyi gör