Türkçe

DustPhotonic is the first to develop an 800G silicon photonic chip

127
2023-10-13 13:48:35
Çeviriyi gör

Recently, DustPhotonics released a single chip 800G-DR8 silicon photonic chip for data center applications, which is an important milestone in practical photonics in data centers. The company claims that its single-chip solution provides high-performance and easy to implement solutions for system architects.

DustPhotonics' 800G-DR8 photonic integrated circuit provides a single chip solution for fiber copper interconnections in data centers and artificial intelligence applications. The equipment is currently in the sample stage and is expected to start production in the first quarter of 2024.

Although photonic integrated circuits (PICs) have been used in high-bandwidth and high-efficiency applications for some time, not all processes are the same. Some photonic processes utilize wide bandgap semiconductors based on gallium or indium. Alternatively, DustPhotonics' progress is based on silicon photonics, which opens the door to more mature and scalable processes for silicon.

Data centers require high bandwidth solutions
As the amount of data flowing through the data center continues to increase, limited transmission speeds have caused processing bottlenecks. Although traditional copper based cabling solutions are sufficient to meet many applications, they cannot support the bandwidth and efficiency requirements required for next-generation data centers.

This becomes particularly true when 800Gb/s transmission is approaching, especially when looking ahead to data rates of 1.6 Tb/s and 3.2 Tb/s. Therefore, designers are studying photonics to improve the bandwidth and efficiency of data center communication.

(Image source: Rosenberger)

As the demand for higher data rates increases, data centers may benefit from utilizing photonic solutions. This is not to say that PIC is currently the best solution for everyone. If the application does not require sustained high data rates, deploying photonic solutions may bring step-by-step improvements to many headache problems. By utilizing silicon photonics, single chip solutions can be deployed instead of using discrete components, thereby reducing system complexity, power consumption, and cost.

800G transmission rate
DustPhotonics' 800G photonic integrated circuit provides designers with a single chip solution for DR8 applications, providing a relatively easy transition to higher data rates. The chip itself supports 8 optical channels, each with a modulation rate of 100Gb/s, and can use single-mode fiber.

Although the chip includes lasers in its packaging, it also utilizes DustPhotonics' low loss laser coupling technology to support various commercial off the shelf lasers. In addition, compared to solutions using discrete components, the single chip solution reduces power consumption by 20%, improves overall efficiency, while maintaining the simplicity of the system itself.

(Image source: DustPhotonics)

The Combination of Silicon Photonics and CMOS
Although silicon photonics may not be a universal semiconductor technology, it does bring countless benefits, including improved bandwidth, efficiency, and throughput for optical/electrical conversion. By utilizing mature silicon processes, silicon photonics solutions may exhibit faster development cycles than other technologies.

Due to the integration of silicon photonics technology with traditional CMOS design, it may become more common in data center applications. DustPhotonics 800G PIC provides an example of this possibility and emphasizes the utility of integrating optical and electrical transmission to improve data rates.

Source: OFweek

İlgili öneriler
  • Scientists have conducted a series of studies on the mechanical properties and flame retardancy of laser formed Ti40 flame-retardant titanium alloy

    Recently, Professor Huang Chunping's team from Nanchang University of Aeronautics and Astronautics conducted a series of studies on the mechanical and flame retardant properties of laser formed Ti40 flame retardant titanium alloy. The research team used typical Ti40 flame-retardant titanium alloy as the research object and prepared Ti40 flame-retardant titanium alloy using LSF technology. The micr...

    2023-08-15
    Çeviriyi gör
  • $75 million, this laser equipment manufacturer will be acquired

    Rocket Lab USA continues its path of vertical integration and has signed an exclusive but non binding agreement with MynaricAG, a German laser communication terminal (LCT) supplier and Rocket Lab supplier, to acquire the company for $75 million in cash or stock.If Mynaric achieves its revenue target, it will pay an additional revenue of up to $75 million. This acquisition depends on whether Myna...

    03-25
    Çeviriyi gör
  • Leica Cine 1 laser TV with 4K display screen launched with a starting price of $8995

    Photography brand Leica has launched its first 4K movie and television. The Leica Cine 1 laser TV was announced a year later during the I FA 2022 period. This iconic photography brand is shifting some of its focus to projecting perfect images in our living room.featureThe Leica Cine 1 laser TV embodies Leica's philosophy in its camera design. Leica continues to provide precision optical engineerin...

    2023-10-19
    Çeviriyi gör
  • APE 2025 is about to take place

    The Asia Optoelectronic Expo 2025 (APE 2025) will be held from February 26 to 28, 2025 at the Marina Bay Sands Convention and Exhibition Centre in Singapore. It covers products such as information and communication, optics, lasers, infrared, sensing, display, quantum, and is a one-stop optoelectronic comprehensive platform for the optoelectronic industry and application fields; The exhibition focu...

    02-18
    Çeviriyi gör
  • Researchers enhance the signal of perovskite nanosheets

    In the field of optoelectronics, researchers from Busan National University in South Korea and the University of Oxford in the UK have successfully improved the signal amplification ability of CsPbBr3 perovskite nanosheets through innovative patterned waveguide methods, bringing new possibilities for the future of optoelectronics. This breakthrough not only has potential applications in fields suc...

    2024-02-22
    Çeviriyi gör