Türkçe

SILICON AUSTRIA LABS and EV GROUP Strengthen Cooperation in Optical Technology Research

143
2023-11-15 14:06:51
Çeviriyi gör

EV Group, a leading supplier of wafer bonding and lithography equipment for the MEMS, nanotechnology, and semiconductor markets, and Silicon Austria Labs, a leading electronic systems research center in Austria, announced that SAL has received and installed multiple EVG lithography and photoresist processing systems in its MicroFab at the R&D cleanroom facility in Filach, Austria.

These devices are part of the strengthened cooperation between the two companies, aimed at accelerating the development and deployment of advanced optical technologies for heterogeneous integrated applications, including wafer level optical devices for micro cameras and mirrors, diffractive optical devices, and automotive optical devices for autonomous driving and automotive lighting.

The newly installed EVG system includes LITHOSCALE maskless exposure system, EVG7300 automated SmartNIL nanoimprinting and wafer level optical system, as well as multiple complementary photoresist processing systems. These systems incorporate multiple existing EVG bonding, mask alignment, and lithography systems from SAL, including the first installation of the next-generation 200mm version of the EVG150 automatic photoresist processing system. Compared to the previous generation platform, this system provides higher throughput, greater flexibility, and smaller tool footprint.

In addition, SAL has been working closely with the technical development and application engineering teams at EVG headquarters, including the NILPhotonics capability center, to leverage EVG's equipment and process knowledge to develop processes that can be transferred and expanded to mass production.

Dr. Mohssen Moridi, Director of Microsystem Research at Silicon Australia Labs, stated: We have recently been immersed in a series of cutting-edge research and development projects, involving metaoptics, integrated photonics, and MEMS, which require the use of advanced lithography and bonding tools. Through our valuable collaboration with EVG, we have obtained tools with excellent reliability and accuracy, which are crucial for successful research and development work. It is worth noting that the EVG7300 SmartNIL system has become a key tool that can be used on a large scale for emerging photonics and MEMS devices Produce nanostructures. Its applications extend to multiple fields such as intelligent lighting systems, AR/VR, automotive optics, telecommunications, and quantum technology.

SAL was one of the first customers to obtain the new EVG7300 system, which is EVG's most advanced solution that combines multiple UV based process capabilities, such as nanoimprint lithography, lens forming, and lens stacking. The EVG7300 is specifically developed to meet the advanced research and production needs of various emerging applications, involving micro and nano patterns as well as functional layer stacking.

EVG's revolutionary LITHOSCALE maskless exposure system meets the lithography needs of markets and applications that require high flexibility or product changes. It solves traditional bottlenecks by combining powerful digital processing capabilities, high structured resolution, and throughput scalability. It is very suitable for rapid prototyping design, providing fast turnaround and development cycle time.

Thomas Glinner, Technical Director of EV Group, stated: Silicon Australia Labs is a leading research center in the field of optical miniaturization and heterogeneous integration, and a strategic partner of EV Group. The latest shipment and installation of our advanced lithography and photoresist processing systems further strengthen our partnership and support SAIC's ability to develop future key technologies and apply our leading solutions to practical industrial applications.

Source: Laser Network

İlgili öneriler
  • High Resolution Visible Light Imaging of Large Aperture Telescopes

    The deformable mirror used in adaptive optics can instantly correct the static wavefront aberrations and atmospheric turbulence wavefront disturbances of the optical system by changing its surface. This enables the optical system to automatically adapt to changes in the environment and maintain optimal performance. It is widely used in high-resolution astronomical observations, laser atmospheric t...

    2023-10-31
    Çeviriyi gör
  • Application of Multipurpose Femtosecond Laser Interferometry in High Precision Silicon Nanostructures

    Researchers from the Laser Processing Group of the IO-CSIC Institute of Optics in Spain report on the application of multi-purpose femtosecond laser interference in high-precision silicon nanostructures. The related research was published in Optics&Laser Technology with the title "Versatile femtosecond laser interference pattern applied to high precision nanostructured of silicon".Highlights:...

    2024-07-10
    Çeviriyi gör
  • Additive Manufacturing Software Market 2025: Analysis, Data, and Forecasting

    In March 2025, Additive Manufacturing Research (AMR) released its latest 3D printing market research report, "AM Software Markets 2025: Analysis, Data, and Forecast," which provides a comprehensive and in-depth analysis of the 3D printing software industry. The latest research findings indicate that global revenue from additive manufacturing (AM) software is expected to grow from $2.44 billion in ...

    03-17
    Çeviriyi gör
  • Han's Laser wins multiple lithium battery projects

    Recently, relevant information shows that Shenzhen Han's Lithium Battery Intelligent Equipment Co., Ltd. (referred to as Han's Lithium Battery) has won the bid for the solid-state battery pilot line testing section process equipment project and solid-state battery pilot line assembly section process equipment project of Dongfeng Hongtai Holdings Group Co., Ltd. The winning bid amounts are 9.3847 m...

    2024-09-28
    Çeviriyi gör
  • The research team has solved decades long challenges in the field of microscopy

    When observing biological samples under a microscope, if the medium in which the objective lens is located is different from the sample, the light beam will be interfered with. For example, when observing a water sample with a lens surrounded by air, the light bends more strongly in the air around the lens than in water.This interference can cause the measured sample depth to be smaller than the a...

    2024-04-27
    Çeviriyi gör