Türkçe

Scientists at Peking University invent ultra-thin optical crystals for next-generation laser technology

122
2023-12-20 19:31:08
Çeviriyi gör

BEIJING, Dec. 19 (Xinhua) -- A team of Chinese researchers used a novel theory to invent a new type of ultrathin optical crystal with high energy efficiency, laying the foundation for next-generation laser technology.

This photo taken on Dec. 15, 2023 shows a Twist Boron Nitride (TBN) crystal placed on a piece of fused silica in Peking University, Beijing, capital of China. A team of Chinese researchers used a novel theory to invent a new type of ultrathin optical crystal with high energy efficiency, laying the foundation for next-generation laser technology. (Xinhua/Wei Mengjia)

 

Prof. Wang Enge from the School of Physics, Peking University, recently told Xinhua that the Twist Boron Nitride (TBN) made by the team, with a micron-level thickness, is the thinnest optical crystal currently known in the world. Compared with traditional crystals of the same thickness, its energy efficiency is raised by 100 to 10,000 times.

Wang, also an academician of the Chinese Academy of Sciences, said this achievement is an original innovation by China in the theory of optical crystals, and has created a new field of making optical crystals with two-dimensional thin-film materials of light elements.

The research findings were recently published in the journal Physical Review Letters.

Laser is one of the underlying technologies of the information society. Optical crystals can realize the functions of frequency conversion, parametric amplification and signal modulation, to name a few, and are the key parts of laser devices.

In the past 60 years, the research and development of optical crystals has been mainly guided by two phase-matching theories proposed by scientists in the United States.

However, due to the limitations of traditional theory models and material systems, the existing crystals have struggled to meet the future requirements for developing laser devices, such as miniaturization, high integration and functionalization. The development of new-generation laser technology needs breakthroughs in optical crystal theory and materials.

Wang Enge and Prof. Liu Kaihui, director of the Institute of Condensed Matter and Material Physics, School of Physics, Peking University, led the team to develop the twist-phase-matching theory, the third phase-matching theory based on the light-element material system.

"The laser generated by optical crystals can be viewed as a marching column of individuals. The twist mechanism can make everyone's direction and pace highly coordinated, greatly improving the energy conversion efficiency of the laser," explained Liu, who is also deputy director of the Interdisciplinary Institute of Light-Element Quantum Materials at the Beijing Huairou National Comprehensive Science Center.

The research has opened up a brand-new design model and material system, and realized the original innovation of the whole chain from basic optics theory to material science and technology, he said.

"The TBN crystal's thickness ranges from 1 to 10 microns. The thickness of optical crystals we had known before is mostly at the level of a millimeter or even centimeter," Liu added.

The TBN production technology is now applying for patents in the United States, Britain, Japan and other countries. The team has made a TBN laser prototype and is developing new-generation laser technology with enterprises.

"Optical crystal is the cornerstone of laser technology development, and the future of laser technology is determined by the design theory and production technology of optical crystals," Wang said.

With ultra-thin size, excellent integration potential and new functions, the TBN crystal is expected to achieve new application breakthroughs in quantum light sources, photonic chips, artificial intelligence and other fields in the future, according to Wang.

Liu Kaihui (front), director of the Institute of Condensed Matter and Material Physics, School of Physics, Peking University, and other members of a research team pose for a group photo in Peking University, Beijing, capital of China, Dec. 15, 2023. A team of Chinese researchers used a novel theory to invent a new type of ultrathin optical crystal with high energy efficiency, laying the foundation for next-generation laser technology. (Xinhua/Wei Mengjia)

İlgili öneriler
  • Sivers Photonics has received a $1 million order for advanced optical sensing products in fields such as LiDAR and industrial applications

    Sivers Semiconductors AB announced that its subsidiary Sivers Photonics has received a new order worth $1 million for advanced optical sensing products from three customers in the fields of LiDAR, Medical, and Industrial.In the first half of the fourth quarter of 2023, new orders were received from several US clients, which will lead to the manufacturing of advanced lasers and optical amplifiers f...

    2023-11-30
    Çeviriyi gör
  • Hyperspectral imaging technology: a comprehensive guide from principles to applications

    Hyperspectral imaging technology is a highly anticipated innovation in the field of science and engineering today. It not only integrates spectroscopy and imaging technology, but also has wide applications in various industries and research fields. This article will delve into the basic principles, working mechanisms, and applications of hyperspectral imaging in different fields.Introduction to hy...

    2024-04-16
    Çeviriyi gör
  • Launching the world's strongest laser at a cost of 320 million euros

    Beijing, April 1st (Reporter Liu Xia) - The world's most powerful laser has been activated recently. On March 31st, the Physicist Organization Network reported that the system can enable laser pulses to reach a peak of 10 terawatts (1 terawatt=100 terawatts=1015 watts) within 1 femtosecond (1000 trillions of a second), which is expected to promote revolutionary progress in multiple fi...

    2024-04-03
    Çeviriyi gör
  • Innovative laser based rain enhancement project launched by UAEREP and DERC teams

    Recently, the UAE Rainfall Enhancement Scientific Research Program launched a groundbreaking project with Dr. Guillaume Matras and his team from the Directional Energy Research Center of the Institute of Technology Innovation, aiming to address the challenge of global water shortage through advanced technology. This collaboration marks an important milestone in the field of rainfall enhancement sc...

    2024-03-02
    Çeviriyi gör
  • 20 million dollars! Undersea fiber optic agreement reached, fully operational by 2026

    Recently, Confluence Networks LLC has announced a long-term partnership agreement with Laser Light Communications Inc., a developer and provider of software controlled optical network services.According to the agreement, Laser Light will adopt Confluence-1 submarine fiber optic network, which Confluence Networks is about to launch, as the core part of its global network. The protocol will last for...

    2024-05-24
    Çeviriyi gör