Türkçe

The research team establishes synthetic dimensional dynamics to manipulate light

509
2024-03-20 15:57:41
Çeviriyi gör

In the field of physics, the synthetic dimension has become one of the forefront of active research, providing a way to explore phenomena in high-dimensional space, surpassing our traditional 3D geometric space. This concept has attracted great attention, especially in the field of topological photonics, as it has the potential to unlock rich physics that traditional dimensions cannot reach.

Researchers have proposed various theoretical frameworks to study and implement SDs, aiming to utilize phenomena such as synthetic gauge fields, quantum Hall physics, discrete solitons, and four-dimensional or higher dimensional topological phase transitions. These suggestions may lead to a new fundamental understanding of physics.

One of the main challenges in traditional three-dimensional space is to experimentally achieve complex lattice structures with specific coupling. SD provides a solution that provides a more accessible platform for creating complex resonator networks with anisotropic, long-range, or dissipative coupling. This ability has led to groundbreaking demonstrations of non Hermitian topological entanglement, parity check time symmetry, and other phenomena.

Various parameters or degrees of freedom in the system, such as frequency mode, spatial mode, and orbital angular momentum, can be used to construct SD and are expected to be applied in various fields, from optical communication to topological insulator lasers.

A key goal in this field is to build a "utopian" resonator network where any pair of modes can be coupled in a controlled manner. To achieve this goal, precise mode manipulation is required in the photon system, providing a way to enhance data transmission, energy collection efficiency, and laser array radiation.

Now, as reported in Advanced Photonics, an international research team has created customizable waveguide arrays to establish synthetic modal dimensions. This advancement allows for effective control of light in photonic systems without the need for complex additional features such as nonlinearity or non closure.

Professor Chen Zhigang from Nankai University pointed out that the ability to adjust different light modes within the system takes us one step closer to achieving a 'utopian' network, where all experimental parameters are completely controllable.

In their work, researchers modulated perturbations of propagation that matched the differences between different light modes. To this end, they used artificial neural networks to design waveguide arrays in real space. After training, artificial neural networks can create waveguide settings with the desired mode patterns. These tests help reveal how light propagates and is limited within the array.

Finally, the researchers demonstrated the use of artificial neural networks to design a special type of photonic lattice structure called Su Schrieffer Heeger lattice. This lattice has specific functions and can topologically control the light of the entire system. This allows them to change the volume mode of light propagation and demonstrate the unique characteristics of their synthesized size.

The impact of this work is enormous. By fine-tuning the waveguide distance and frequency, researchers aim to optimize the design and manufacturing of integrated photonic devices.

Professor Hrvoje Buljan from the University of Zagreb said, "In addition to photonics, this work also provides a glimpse into geometrically difficult physics. It brings broad prospects for applications ranging from mode lasers to quantum optics and data transmission.".

Chen and Buljan both pointed out that the interaction between topological photonics driven by artificial neural networks and synthetic dimension photonics has opened up new possibilities for discovery, which may lead to unprecedented material and device applications.

Source: Laser Net

İlgili öneriler
  • Analysis of Optically Pumped Semiconductor Laser Technology for Promoting the Development of Life Sciences

    Optically Pumped Semiconductor Lasers technology has achieved great success in the market due to its various unique advantages, with over 100000 OPSL devices currently operating in the market. This article introduces the application and new developments of OPSL in the fields of flow cytometry and DNA sequencing.OPSL has the characteristics of flexible wavelength extension, adjustable power, compac...

    2024-02-01
    Çeviriyi gör
  • Iron Triangle releases fiber Bragg gratings and arrays based on multi-core fibers

    T35 multi-core fiber grating and T103 multi-core fiber grating arrays can be engraved into all fiber cores in physical locations, or only onto certain fiber cores.They can also have the same wavelength, or they can have all different wavelengths at the same physical location along the fiber or at different physical locations along the fiber.T35 and T103 are very suitable for projects that require...

    2023-10-28
    Çeviriyi gör
  • Laser communication is expected to completely change optical links

    Laser technology is becoming a game changer in the field of satellite communication (SATCOM), capable of creating ultra secure networks that can transmit large amounts of data at unprecedented speeds through satellite networks and constellations.With continuous progress, the industry is ready for growth and collaboration, seizing the untapped potential of disconnected populations. The ability to h...

    2023-09-20
    Çeviriyi gör
  • Ultrafast laser technology continues to reach new heights

    Ultra short pulse lasers, such as femtosecond lasers, are increasingly becoming easy-to-use plug and play devices suitable for a wide range of industrial and biomedical applications. Fifteen years ago, the volume of these lasers was still very large, requiring daily cleaning of optical components, regular maintenance of cooling water, and continuous optimization of laser parameters. Nowada...

    2023-11-06
    Çeviriyi gör
  • The LANL Laboratory in the United States has achieved a light source that generates a circularly polarized single photon stream using a quantum light emitter

    Los Alamos National Laboratory (LANL) has developed a method for a quantum light emitter that stacks two different atomically thin materials together to achieve a light source that produces a stream of circularly polarized single photons. These light sources can in turn be used for a variety of quantum information and communication applications.According to Los Alamos researcher Han Htoon, the wor...

    2023-09-02
    Çeviriyi gör