Türkçe

Luxiner launches LXR platform to set new standards for industrial laser microfabrication

98
2024-03-25 14:03:24
Çeviriyi gör

Luxiner, a globally renowned laser technology leader, proudly launches its latest innovative product, the groundbreaking LXR ultra short pulse laser platform. This cutting-edge technology represents a significant leap in industrial laser processing, providing unparalleled performance, versatility, and reliability.

In today's rapidly changing industrial environment, laser technology plays a crucial role in many fields, from microelectronics and semiconductors to automotive manufacturing and biomedical applications. Realizing the constantly evolving demand for higher precision, faster processing speeds, and more efficient material processing solutions, Luxiner has responded to the challenges by launching the LXR platform.

The LXR platform is designed specifically to meet the needs of modern industrial applications. Featuring a robust design with 24/7 operational readiness, reliable handling, and highly modular architecture that meets the needs of every customer; With its unique requirements, Luxiner's LXR platform has set a new benchmark for industrial USP lasers.

The LXR platform provides ultra short laser energy pulses to ensure high-quality material processing with minimal heat generation. This patented technology ensures precise ablation, minimal thermal damage, and excellent control of laser beam parameters, producing excellent results even in the most demanding applications.

The main functions of the LXR platform include: pulse energy up to 160 μ J: Ensure efficient and accurate material processing in various applications.
Power up to 160 W: promotes fast and efficient laser processing, improving productivity.
Beam quality M2<1.2: Provides excellent beam control, achieving excellent processing quality and accuracy.
Flexible pulse width: From a standard pulse width of 800fs to factory settings up to 12 ps, it can be optimized for different materials and applications.

Supports multiple wavelengths, including 1030 nm, 515 nm, and 343 nm, providing flexibility for various industrial applications.
Full digital control of pulse output: allows for precise customization of laser processing parameters to achieve the desired results.
Standard burst and fast burst modes: support optimization for deep carving, micro machining, surface texture, and more.
The blasting energy can reach up to 0.8 mJ, ensuring efficient and accurate material ablation even in demanding applications.

"We are pleased to bring the LXR platform to the market," said Antonio Raspa, Product Manager of Luxiner Solid State Laser. The unique feature of the LXR series platform lies in its unparalleled control and flexibility in laser pulse output. Its intuitive hardware and software interface enable seamless integration into the production line, simplifying the programming of operating parameters.

Luxiner has earned an excellent reputation in producing powerful and reliable laser sources, and the LXR platform continues this tradition. The LXR platform ensures optimal uptime and productivity, backed by Luxiner's excellent customer support and service.

The development of the LXR platform highlights Luxiner's commitment to innovation, industry collaboration, and deep understanding of customer needs. Luxiner's team of engineers and scientists worked tirelessly to bring this breakthrough technology to the market, setting clear industry standards for USP laser technology.

Source: Laser Net

İlgili öneriler
  • MKS Instruments will build a factory in Malaysia

    Recently, American semiconductor equipment manufacturer MKS Instruments announced plans to build a factory in Penang, Malaysia to support the production of wafer manufacturing equipment in the region and globally. This development plan will be divided into three stages to build a new factory, and it is expected to break ground and start construction in early 2025.Why choose to build a factory in M...

    2024-06-26
    Çeviriyi gör
  • Swedish KTH develops 3D printed quartz glass micro optical devices on optical fibers

    In what has been described as the "first communication", Swedish researchers conducted 3D printed quartz glass micro optical devices on the tip of optical fibers. They said that this progress could lead to faster Internet and better connectivity, as well as innovations such as smaller sensors and imaging systems.Scientists from the KTH Royal Institute of Technology in Stockholm have stated that co...

    2024-05-23
    Çeviriyi gör
  • Construction of Advanced New Laser Research Centers in American Universities

    The ATLAS R&D center is expected to be completed by mid-2026!A powerful new laser research facility located on the Foothills campus of Colorado State University will begin construction this month. The facility is planned to be put into use in mid-2026 and is the result of 40 years of laser development research at Colorado State University. It is a collaboration with the Fusion Energy Science P...

    2024-10-30
    Çeviriyi gör
  • The researchers used ultrafast lasers to create nanoscale photonic crystals

    The optical properties of photonic crystals are closely related to their lattice constants, which are usually required to be in the same order of magnitude as the operating wavelength. In a crystal material, the photonic crystal structure is formed by the periodic arrangement in space of units whose dielectric constant is different from that of the crystal itself, and whose lattice constant depend...

    2023-08-04
    Çeviriyi gör
  • Mechanism of Time Power Modulation Increasing Weld Depth in High Power Laser Welding

    Researchers from the Hanover Laser Center and Leibniz University in Germany reported on the mechanism of increased welding depth during time power modulation in high-power laser beam welding. The related paper titled "Mechanisms of Increasing Welding Depth during Temporary Power Modulation in High Power Laser Beam Welding" was published in Advanced Engineering Materials.Understanding the basic mec...

    2024-12-18
    Çeviriyi gör