Türkçe

This innovation will significantly improve the sensitivity of gravitational wave detectors

138
2024-04-17 16:23:40
Çeviriyi gör

In 2017, the detection of gravitational waves generated by the merger of binary neutron stars marked a significant breakthrough in physics. These waves reveal important information about the universe, from the origin of short gamma ray bursts to the formation of heavy elements.

However, capturing gravitational waves from the merged residue remains a challenge as these waves avoid the detection range of the current detector. However, they can illuminate the internal structure of neutron stars.

The solution may lie in amplifying signals through optical springs and simulating spring behavior using the radiation pressure of light. The Tokyo Institute of Technology's Japan research group, led by associate professors Kentaro Somiya and Dr. Sotatsu Otabe, has proposed an innovation: Kerr effect enhanced optical springs.

In order to make the system more sensitive without requiring more energy, researchers used special techniques in optical equipment. They introduced a material called Kerr medium. This material has a unique characteristic of changing the refractive index of light.

Due to this feature, the device can act as a harder optical spring, thereby enhancing its ability to respond to very subtle changes (such as those caused by gravitational waves) without consuming more energy. Tests have shown that this method increases the hardness of lightweight springs by 1.6 times, enabling the device to detect changes at higher frequencies (from 53 Hz to 67 Hz).

This progress paves the way for the next generation of gravitational wave detectors, which can detect elusive waves to date and provide us with an additional key to understanding the composition of the universe. The proposed design is easy to implement and introduces adjustable parameters into the optomechanical system.

Source: Laser Net

İlgili öneriler
  • 10.30 Shenzhen Munich South China Laser Exhibition awaits you

    The Munich South China Laser Exhibition is about to open!As a member exhibition of the South China International Intelligent Manufacturing, Advanced Electronics, and Laser Technology Expo (referred to as "LEAP Expo"), it will be held from October 30 to November 1, 2023 at the Shenzhen International Convention and Exhibition Center (Bao'an New Hall) in conjunction with the Munich South China Elect...

    2023-10-26
    Çeviriyi gör
  • IoTech shapes the flexible future of 3D printed electronic products

    The rapidly developing IoTech enterprise headquartered in Israel will showcase at LOPEC 2024 how its disruptive digital manufacturing continuous laser assisted deposition technology shapes the future of microelectronics and additive manufacturing.Herv é Javice, co-founder and CEO of ioTech, commented, "We are delighted to be attending the LOPEC exhibition for the first time and showcasing ...

    2024-02-27
    Çeviriyi gör
  • The project cycle has been significantly shortened! Scientists use supercomputing to assist in laser fusion research

    Recently, the Laser Energy Laboratory (LLE) at the University of Rochester installed a new supercomputer to support its laser fusion experiments.The new supercomputer has increased the computing power of the laboratory by four times and shortened the time required to complete certain projects from 30 weeks to a few days.The Laser Energy Laboratory (LLE) at the University of Rochester is one of the...

    2023-10-26
    Çeviriyi gör
  • The laser direct writing lithography equipment market is expected to reach $160.25 million in 2029 with a compound growth rate of 5.21%

    Lithography machine is the key equipment for making high precision mask plate. Using a very fine laser beam, the highly precise line pattern is drawn on the mask substrate under the control of an extremely precise automatic control system.Laser direct writing is to use a laser beam with variable intensity to implement variable dose exposure on the resist material (photoresist) on the subst...

    2023-08-04
    Çeviriyi gör
  • Progress in Laser Physics: Reducing Residual Amplitude Modulation for Accurate Measurement

    Driven by the pioneering work of scientists such as John Young Hall, significant progress has been made in precision measurement in the field of laser physics. His contribution to laser frequency stability and precise measurement using lasers has led to groundbreaking techniques that significantly reduce residual amplitude modulation.John Hall's research focuses on understanding and manipulating s...

    2024-03-18
    Çeviriyi gör