Türkçe

Shanghai Optical Machine has made progress in frequency shift of even harmonic of single layer MoS2

101
2023-09-07 14:05:17
Çeviriyi gör

Recently, the research team of the State Key Laboratory of High-Field Laser Physics at the Shanghai Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made progress in using high-field lasers to drive the even harmonic frequency shift of single-layer MoS2. The results were published in Optics Express under the title "Frequency shift of even-order high harmonic generation in monolayer MoS2".

High order harmonic radiation in solid materials is an important spectroscopy technique to detect the fundamental properties of matter, and has been successfully used to reconstruct crystal band structure, detect Berry curvature and detect topological phase transitions. In recent years, two-dimensional layered materials have received extensive attention, which brings new opportunities for further research on the generation of higher harmonics.

Since the thickness of the material is only a single or a few atomic layers, its spatial scale is much smaller than the wavelength of the driving laser, which can effectively avoid the influence of nonlinear transmission, and thus become an ideal material for studying the ultrafast-fast dynamics of laser field. Among them, monolayer molybdenum disulfide (MoS2) has attracted much attention due to its non-centrosymmetric structure and significant nonlinearity.

This research team [Opt.Express 29,4830 (2021)] observed an abnormal enhancement of even harmonics in the HHG spectrum of MoS2 and attributed this to spectral interference during different half-weeks of Berry contact control. In addition, quantum trajectory analysis suggests that the transition dipole moment phase and Berry linkage modulate the energy and momentum of the released photon, but no experimental observations have confirmed this so far.

The research team used the mid-infrared laser light source built by the laboratory to excite single-layer MoS2 to generate higher-order harmonic spectrum. It was found that when the laser polarization was driven along the armrest direction, the center frequency of even harmonics would shift significantly, and the harmonic energy of the frequency shift was close to the band gap energy of single-layer MoS2.

In addition, it is found that the frequency shift of even harmonics of adjacent order is opposite, that is, the 6th harmonic is red shifted, while the 8th harmonic is blue shifted. Based on the semiconductor Bloch equation and the saddle point calculation of electron orbit, the research team successfully revealed the microphysical mechanism of frequency shift, and confirmed that the frequency shift phenomenon of even harmonic is mainly from the interband polarization process.

The theoretical analysis further shows that the transition dipole moment phase and the Bailie connection jointly modulate the moment and momentum of the electron-hole pair recombination, resulting in a change in the frequency of the photon released by the adjacent half-period, which then changes the center frequency of different harmonic levels, and finally causes six redshifts and eight blue shifts of MoS2 spectrum. This work reveals that the transition dipole moment phase and Berry connection play an important role in the high-field optical response of non-centrosymmetric materials, and contributes to the fundamental understanding of ultrafine carrier dynamics in non-centrosymmetric materials.

Figure 1. The simulated higher-order harmonic spectra reproduce the experimental observations.

Figure 2. (a) the frequency shift of different levels of the spectrum between bands, and (b) the dependence of the harmonic frequency shift on the crystal azimuth.

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

İlgili öneriler
  • Dr. Gu Bo, a renowned expert in the laser industry, has been elected as a member of the Canadian Academy of Engineering

    On May 7, 2024, the official website of the Canadian Academy of Engineering announced that Dr. Gu Bo, a renowned expert in the laser industry, has been elected as a member of the Canadian Academy of Engineering.Dr. Gu BoAcademician of the Canadian Academy of EngineeringFounder/President of Bose Photonics, USADr. Gu Bo is recognized as a pioneer and academic leader in the global field of fiber lase...

    2024-05-07
    Çeviriyi gör
  • British scientists pioneered groundbreaking laser tools to help discover exoplanets

    Physicists from the University of Heriot and the University of Cambridge have developed an innovative laser system called Astrocomb, which can significantly improve the detection of exoplanets. This advanced tool can accurately measure the spectra emitted by nearby stars, which fluctuate due to the gravitational influence of orbiting planets. It is expected that this technology will enhance resear...

    2024-04-02
    Çeviriyi gör
  • Making Infrared Light Visible: New Equipment Utilizes 2D Materials to Convert Infrared Light

    Infrared imaging and sensing technology can be used in various fields, from astronomy to chemistry. For example, when infrared light passes through a gas, sensing changes in light can help scientists identify specific properties of the gas. The use of visible light may not always achieve this sensing.However, existing infrared sensors are bulky and inefficient. In addition, due to the use of infra...

    2024-06-24
    Çeviriyi gör
  • Cambridge scientists have achieved the long-sought quantum state stability in new 2D materials

    Scientists at the Cavendish laboratory have discovered the spin coherence of hexagonal boron nitride (hBN) under normal conditions, providing new prospects for the application of quantum technology.Researchers at Cavendish Laboratory have found that a single "atomic defect" in a material called hexagonal boron nitride (hBN) maintains spin coherence at room temperature and can be manipulated using ...

    2024-05-27
    Çeviriyi gör
  • Quantum droplets reveal a new field of macroscopic complexity

    Scientists have advanced this field by stabilizing exciton polaritons in semiconductor photonic gratings, achieving long-lived and optically configurable quantum fluids suitable for complex system simulations.Researchers from Leicester CNR Nanotec and the School of Physics at the University of Warsaw used a new generation of semiconductor photonic gratings to optically customize the composite of q...

    2024-03-28
    Çeviriyi gör