Tiếng Việt

A new type of electrically driven organic semiconductor laser can be used in the fields of spectroscopy, metrology, and sensing

128
2023-10-07 16:48:45
Xem bản dịch

According to a report from Maims Consulting, scientists at the University of St. Andrews in the UK recently stated that they have made a "significant breakthrough" in the decades of challenges in developing compact organic semiconductor laser technology. 

Firstly, an OLED with a world record light output was manufactured, and then integrated with a polymer laser structure. This new type of laser emits a green laser beam composed of short light pulses.

Structure of electrically driven organic semiconductor lasers
The paper published in the journal Nature explains how the research team at the University of St. Andrews overcomes common organic semiconductor problems such as low current density and intolerable losses caused by injecting charges into the gain medium.
The paper points out that "researchers have achieved loss reduction by developing an integrated device structure that effectively combines OLEDs with extremely high internal light generation capabilities with polymer distributed feedback lasers. Under the electrical driving of the integrated structure, the threshold of light output and driving current can be observed, with a narrow emission spectrum and the formation of a laser beam above the threshold.

The research results provide an organic electronic device that has never been proven before, and indicate that indirect electric pumping of OLEDs is a very effective method for achieving electrically driven organic semiconductor lasers. This provides a method for visible light lasers that can be applied in the fields of spectroscopy, metrology, and sensing.

The conclusion of the paper is: "Researchers have demonstrated an integrated device method that can achieve electrically driven lasers in organic semiconductors, thus solving an important challenge in organic optoelectronics. This method overcomes the main difficulties commonly encountered in direct electrical injection attempts of organic or hybrid perovskite lasers, while retaining operational advantages.

Original link:https://www.eet-china.com/mp/a256224.html

Source: MEMS, Breadboard Community - Core Language

Đề xuất liên quan
  • HENGTONG listed on the Fortune Global 500 list of brands

    Recently, the 2024 (21st) World Brand 500 ranking list exclusively compiled by World Brand Lab was released in New York, USA. HENGTONG brand participated in the selection for the first time, standing out from more than 8000 participating brands in 32 countries worldwide and ranking 395th on the "Top 500 World Brands" list. This year, there are a total of 21 new brands on the global list, of whic...

    2024-12-17
    Xem bản dịch
  • Silicon Valley giants compete for a new 3D printing space race track

    Recently, Eric Schmidt, former CEO of Google, will take over as CEO of Relativity Space, marking his first CEO position since leaving Google.Relativity Space is known for producing rockets using unusual technologies, including 3D printers, automated robots, and artificial intelligence. In 2023, Relativity Space successfully launched the Terran 1 rocket, proving that its 3D printing technology can ...

    03-24
    Xem bản dịch
  • Renowned companies such as TRUMPF and Jenoptik participate in high-power laser projects in Germany

    High power laser diodes will be key components of future fusion power plants.Recently, the German Federal Ministry of Education and Research (BMBF) launched a new project called "DioHELIOS". The project will last for 3 years and is part of BMBF's "Fusion 2040" funding program, which aims to build the first nuclear fusion power plant in Germany by 2040.The project will last for three years and rece...

    2024-11-09
    Xem bản dịch
  • Researchers at Georgia Institute of Technology have developed cost-effective nanoscale printing

    A team of researchers from Georgia Institute of Technology has developed a scalable printing system for metal nanostructures using a new technology called superluminescent light projection. The inventor of this technology Dr. Sourabh Saha and Jungho Choi submitted a patent application for nanoscale printing.Nowadays, the cost of existing nanoscale printing technologies hinders their widespread use...

    2024-02-19
    Xem bản dịch
  • Femtosecond laser-induced plasticity of copper oxide nanowires

    It is reported that researchers from the University of Waterloo in Canada have reported a study on the plasticity of copper oxide nanowires induced by femtosecond laser. The related research was published in Applied Surface Science under the title "Femtosecond laser induced plasticity in CuO nanowires".Metal oxide nanowires are ideal materials for manufacturing nanodevices, especially strain senso...

    2024-07-15
    Xem bản dịch