Tiếng Việt

Researchers treated MXene electrodes with lasers to improve lithium-ion battery performance

134
2023-08-04 17:02:35
Xem bản dịch

Researchers at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia have found that laser scribing or creating nanodots on battery electrodes can improve their storage capacity and stability. The method can be applied to an alternative electrode material called MXene.

 

Lithium-ion batteries have multiple drawbacks in a wide range of applications, and researchers around the world are looking to improve the technology or find better alternatives.

 

MXene is a class of two-dimensional materials made of carbon and nitrogen atoms bonded to metals such as titanium or molybdenum. Despite being ceramic, these materials have good electrical conductivity and high capacitance, making them ideal for energy storage applications such as batteries.

Problems with using MXene

Lithium-ion batteries use graphite electrodes that contain layers of carbon atoms. When the battery is charged, lithium ions are stored between these layers, a process scientists call embedding.

 

MXene is more suitable as an electrode material than graphite because they provide additional storage space for lithium-ion embedding. The problem, however, is that the higher storage capacity is reduced after repeated charging and discharging cycles.

 

The KAUST researchers found that the reason for the decrease in capacity was a chemical change that led to the formation of molybdenum oxide within the MXene structure.

 

Improve performance with laser

The research team led by Husam N. Alshareef used a process called laser scribing, in which infrared laser pulses are used to create "nanodots" on molybdenum carbide on MXene electrodes. The nanodots are about 10 nanometers wide and are connected to the MXene layer by a carbon material, the press release said.

 

The laser-scribing material is used to make the anode and has been tested in more than 1,000 charge-discharge cycles in lithium-ion batteries. The researchers found that anodes with nanodots had four times the electrical storage capacity of anodes without them, and were also able to reach the theoretical maximum capacity of graphite. In addition, even after 1,000 cycles, there was no degradation in performance.

 

The researchers attribute the improved performance of the laser-scribing material to a variety of factors. The generation of nanodots provides additional storage space for the embedding of lithium ions, thus speeding up the charging process. It also reduces the oxygen content in the material, further preventing the formation of molybdenum oxide and reducing MXene electrode performance.

 

The connection between the nanodots and the layers further improves the material's electrical conductivity and stabilizes its structure. The researchers believe that the method could be used as a strategy to improve the performance of MXene, which also uses other metals.

 

While lithium prices have soared due to high demand, MXene can also be used with more abundant metal ions, such as sodium and potassium. It could also lead to the development of a new generation of rechargeable batteries.

 

"This provides a cost-effective and fast way to tune battery performance," added Dr. Zahra Bayhan. Student at King Abdullah University of Science and Technology.

 

MXene is a rapidly growing family of two-dimensional (2D) transition metal carbides/nitrides with promising applications in electronics and energy storage. In particular, Mo2CTx MXene, as an anode for lithium-ion batteries, has a higher capacity than other MXenes.

 

However, this enhanced capacity is accompanied by slow kinetics and poor cyclic stability. Studies have shown that the unstable cycling properties of Mo2CTx are attributable to partial oxidation to MoOx and resulting in structural degradation. A laser-induced Mo2CTx/Mo2C (LS-Mo2CTx) hybrid anode has been developed in which the Mo2C nanodots enhance REDOX kinetics and the laser-reduced oxygen content prevents oxidation-induced structural degradation.

 

At the same time, the strong connection between the laser-induced Mo2C nanodots and the Mo2CTx nanosheets enhances the conductivity and stabilizes the structure during the charge-discharge cycle. The prepared LS-Mo2CTx negative electrode exhibited enhanced capacity of 340 mAh g−1 versus 83 mAh g−1 (original) and improved cyclic stability (capacity retention of 106.2% versus 80.6% of the original) over 1000 cycles. Laser-induced synthesis methods highlight the potential of MXene-based hybrid materials for high-performance energy storage applications.

 

Source: Laser Network

Đề xuất liên quan
  • Beyond Limits: The Amazing Power of Water in Laser Development

    Water helps to generate ultra continuous white lasers with an extremely wide wavelength range.Researchers have made significant progress in creating ultra wideband white laser sources, which have a wide wavelength range from ultraviolet to far-infrared. These advanced lasers are used in various fields, including imaging, femtosecond chemistry, telecommunications, laser spectroscopy, sensing, and u...

    2024-02-26
    Xem bản dịch
  • Invest 13 million euros! Tongkuai opens its Southeast European headquarters in Hungary

    Recently, German company Tongkuai invested 13 million euros to open its headquarters in Southeast Europe in Hungary and jointly established a digital network demonstration factory in the Gothler Business Park. Its business focuses on machine tools for digital manufacturing and laser sales for batteries and other automotive components.Nicola Leibinger Kamm ü ller, CEO of Tongkuai, said, "It is...

    2023-09-16
    Xem bản dịch
  • Afinum Management acquires significant stakes in two laser companies

    Recently, Afinum Management, a private equity firm based in Munich, Germany, has acquired a large stake in two laser companies, with the intention of opening up new laser markets by combining the strengths of three parties.According to media reports, the two companies are ARC Laser in Germany and GNS neo Laser in Israel, and Afinum has agreed with the founders of the two companies that the acquisi...

    2024-08-08
    Xem bản dịch
  • Optimizing the phase focusing of laser accelerators

    With the help of on-chip accelerator technology, researchers at Stanford University are getting closer to manufacturing a miniature electron accelerator that can have various applications in industrial, medical, and physical research.Scientists have proven that silicon dielectric laser accelerators can now be used to accelerate and limit electrons, thereby producing concentrated high-energy electr...

    2024-02-29
    Xem bản dịch
  • ComNav Technologies introduces Mars Pro Laser RTK

    ComNav Technology Ltd. has introduced the Mars Pro Laser RTK, the latest addition to its Universe series GNSS receiver product line, which includes the Venus Laser RTK and Mars Laser RTK. The GNSS receiver is suitable for the land surveying, GIS and construction industries with its innovative features.Mars Pro's laser mode facilitates the use of conventional GNSS receivers in areas where signals a...

    2023-09-13
    Xem bản dịch