Tiếng Việt

WVU engineers develop laser systems to protect space assets from the impact of Earth orbit debris

124
2023-10-10 14:20:06
Xem bản dịch

The research from the University of West Virginia has been rewarded, as debris scattered in planetary orbits that pose a threat to spacecraft and satellites may be pushed away from potential collision paths by a coordinated space laser network.

Hang Woon Lee, director of the Space Systems Operations Research Laboratory at the University of West Virginia, said that artificial debris dumps, including abandoned satellites, are accumulating around Earth. The more debris in orbit, the higher the risk of some of it colliding with manned and unmanned space assets. He said he believes the best opportunity to prevent these collisions is to install multiple lasers on space platforms. Artificial intelligence driven lasers can be manipulated and work together to quickly respond to fragments of any size.

Lee is an assistant professor of mechanical and aerospace engineering at the Benjamin M. Statler School of Engineering and Mineral Resources, and a potential breakthrough research recipient of NASA's prestigious Early Career Teacher Award in 2023. NASA is supporting Lee's rapid response debris removal research with an annual funding of $200000 for a period of three years.

This work is still in its early stages, and the research team is currently verifying that their proposed algorithm for running laser systems will be an effective and cost-effective solution. But long-range vision is "the active execution of orbital maneuvers and collaborative resolution of orbital debris by multiple space-based lasers," Li said. This may lead to timely collision avoidance with high-value spatial assets.

Our goal is to develop a reconfigurable space-based laser network and a set of algorithms that will become enabling technologies to make this network possible and maximize its advantages.

If a natural object, such as a meteoroid, collides with an artificial object, such as the wreckage of a carrier rocket, the resulting debris can spread quickly enough, and even small fragments like paint may have the power to pierce the side of observation or telecommunications satellites or the International Space Station.

This has become an urgent issue as space becomes increasingly chaotic. In particular, the Earth's low orbit has attracted commercial telecommunications systems such as SpaceX's Starlink, which use satellites to provide users with broadband internet. Low orbit is also the location of satellites used for weather forecasting and land cover analysis, and it is the hub for deep space exploration.

The increase in the number of objects increases the risk of collisions, endangers manned missions, and endangers high-value scientific and industrial missions, "Li said. He added that collisions in space can trigger a domino effect called "Kessler Syndrome," which can cause a chain reaction and increase the risk of further collisions, "making space unsustainable and hostile.

Other researchers are developing debris removal technologies such as hooks, harpoons, nets, and cleaners, but these technologies are only applicable to large debris. Lee's method should be able to handle fragments of almost any size.

The algorithm suite that Lee's team will develop may be suitable for lasers installed on large satellites, or may provide power for lasers living on their own dedicated platforms. As part of his research, he will evaluate the various forms that laser networks may take. Regardless of the method, the technology will be able to make many decisions on its own, independently execute actions, and set priorities.

The system will determine which laser combination targets which fragments while ensuring that the resulting trajectory remains collision free.

When a laser beam emits a fragment, it will not forget it. On the contrary, fragments are pushed into new orbits, usually through laser ablation. This means that the laser beam evaporates a small portion of the debris, generating a high-speed plasma plume that pushes the debris off its orbit.

The process of laser ablation and photon pressure can cause changes in the velocity of target debris, ultimately changing the size and shape of its orbit. This is where the motivation to use laser comes into play. The ability to change the trajectory of debris can be effectively controlled through laser networks to push or detach space debris, avoiding potential catastrophic events such as collisions, "Li explained.

A system using multiple lasers can create multiple opportunities to interface with debris and lead to more effective trajectory control. Multiple lasers can simultaneously act on a single target, with a higher intensity spectrum, changing its trajectory in a way that a single laser cannot.

Lee will collaborate with Scott Zemerick, Chief Systems Engineer at TMC Technologies in Fairmont, to validate all models and algorithms developed throughout the project in the "Digital Twin Environment". This will ensure that the product is ready for flight software, Lee said.

Source: Laser Network

Đề xuất liên quan
  • Strengthening the market position: LILA integrates ADAM Lasertechnik

    Laser Integration Laser Applikation (LILA) GmbH is taking over ADAM Lasertechnik on April 1, 2025 and will continue to run the company as part of an external succession plan. This means that not only the expertise but also the proven technology of 3D laser welding with wire feed will be retained.“We are delighted to have found an industry-experienced partner in LILA GmbH, who will continue the bus...

    03-13
    Xem bản dịch
  • Global manufacturer JQ Laser launches a new fully automatic pipe laser cutting machine equipped with a fully automatic feeding device

    JQ LASER, a global manufacturer specializing in laser cutting machines, has launched a new fully automatic pipeline laser cutting machine model T120A.According to JQ LASER's report on the 16th, the body of this new product adopts a vertical rather than horizontal design, reducing the machining center and improving stability.In the past, traditional double chuck pipe cutting machines had a fixed fr...

    2023-10-18
    Xem bản dịch
  • Atomstack Maker A5 V2: A laser engraving machine suitable for beginners

    In the recent DIY field, innovative and increasingly affordable laser engraving machines have emerged, mainly designed for first-time users in this field. A particularly noteworthy example in this regard is the Atomstack Maker A5 V2 model. This device is known for its versatility and ease of use, making it an ideal choice for beginners in the world of laser engraving.The Atomstack Maker A5 V2 is a...

    2024-01-03
    Xem bản dịch
  • Halo Industries raises 580 million yuan to achieve significant breakthrough in SiC laser processing field

    Recently, Halo Industries, an innovative technology company based in California, announced that it has successfully raised $80 million in Series B venture capital, marking a significant breakthrough in its use of laser technology to revolutionize the production of silicon carbide (SiC) semiconductor wafer substrates.This financing is led by the US Innovation Technology Fund (USIT) and involves hea...

    2024-07-18
    Xem bản dịch
  • Bodor Laser has been approved by Shandong Engineering Research Center

    Recently, the Development and Reform Commission of Shandong Province announced the list of Shandong Engineering Research Centers for 2024. bodor Laser has been recognized as the "Advanced Laser High end Intelligent Manufacturing and Application Shandong Engineering Research Center" and is the only enterprise in the laser intelligent manufacturing industry to be listed.As an important component of ...

    2024-07-17
    Xem bản dịch