Tiếng Việt

STL's new 160 micron fiber optic can meet emerging network and pipeline capacity requirements

149
2023-11-01 14:46:45
Xem bản dịch

STL unveiled its new 160 micron fiber optic for the first time at the 2023 India Mobile Conference Trade Show.
The company claims that its 160 micron fiber optic was conceptualized and developed at its Center of Excellence in Maharashtra, India, and its cable capacity is three times that of traditional 250 micron fiber optic. STL Company.

After the launch of 160 micron fiber at the 2023 India Mobile Conference Trade Show, Ashwini Vaishnaw, Minister of Communications, Electronics, and Information Technology, and Railways, spliced two strands of fiber - a height calibration process that connects two hairlike fiber cores.

This new cable was originally targeted at India, which has become one of the fastest growing digital economies in the world. In particular, the size of the new fiber optic will help service providers increase the amount of fiber they can carry in pipelines. At present, the laying of fiber optic pipelines accounts for over 60% of the deployment of fiber optic cables. Network builders around the world are constantly searching for ways to reduce the size of optical fibers in order to accommodate more and more capacity in the available pipeline space.

STL's 160 micron fiber optic encapsulates larger capacity in limited pipeline space through reduced cables with a diameter of 6.4 millimeters, meeting the emerging demand for bandwidth capacity and green business.

STL's innovation may have a significant impact on India's broadband landscape. In large-scale projects such as Bharatnet, India needs to deploy over 20 million kilometers of fiber optic cables by 2025, and using 160 micron fiber optic instead of standard 250 micron fiber optic can shorten deployment time by more than 15%. This allows the use of smaller diameter pipes, thereby reducing plastic footprints on the ground by more than 30%.

Gradually reducing the size of optical fibers is a highly challenging feat, and optical experts around the world have been working hard to solve this problem. However, reducing the fiber size to below 250 microns poses various challenges, including increasing sensitivity to micro bending and increasing complexity of the fiber stretching process.

Dr. Badri Gomatam, Chief Technology Officer of STL Group, stated, "Through highly calibrated processes and material engineering, we have achieved breakthroughs in manufacturing processes and glass composition, achieving micro bending insensitivity.

This product meets the telecommunications grade optical performance standards and meets the ITU G.657A2 standard. This news was released after a series of innovations by STL R&D experts, including multi-core fiber with 4x capacity and 180 micron fiber.

Source: Laser Network

Đề xuất liên quan
  • An optical display technology based on mechanical optical mechanism

    The optical properties of afterglow luminescent particles in mechanical quenching and mechanical luminescence have aroused great interest in various technological applications. However, for specific photon applications, clearer explanations are needed for these unusual events.Recently, scientists from Pohang University of Science and Technology have designed an optical display technology with ALP ...

    2024-03-12
    Xem bản dịch
  • Researchers use liquid metal and laser ablation to create stretchable micro antennas

    Researchers have developed a new method of making micro stretchable antenna with water gel and liquid metal. These antennas can be used for wearable and flexible wireless electronic devices to provide links between devices and external systems for power transmission, data processing, and communication.Using our new manufacturing method, we have demonstrated that the length of liquid metal antennas...

    2023-09-19
    Xem bản dịch
  • NLIGHT releases new fiber laser products

    Recently, nLIGHT launched a new series of ProcessGUARD fiber lasers, which innovatively integrates process monitoring systems with fiber lasers and is committed to providing quality "protection" for applications such as cutting, welding, and additive manufacturing.New ConceptThe nLIGHT ProcessGUARD series fiber laser integrates a photodiode based plasma process monitoring system into the nLIGHT Co...

    2024-11-07
    Xem bản dịch
  • Shanghai Optics and Machinery Institute has made new progress in evaluating the anti laser damage performance of thin film optical components using different laser damage testing protocols

    Recently, the research team of the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made new progress in evaluating the laser damage resistance and damage mechanism of 532nm thin film polarizers using different laser damage test protocols. The related achievements were published in Optical Materi...

    2024-04-25
    Xem bản dịch
  • Researchers use spectroscopic methods to characterize ancient Egyptian mining gemstones

    In a recent study published in the journal AIP Advances, researchers used molecular and elemental spectroscopy techniques such as laser induced breakdown spectroscopy (LIBS), Raman spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy to characterize mines in ancient Egypt.In this study, researchers examined various gemstones that can be traced back to the era of the pharaohs. The team...

    2023-08-31
    Xem bản dịch