Tiếng Việt

Researchers have reinvented laser free magnetic control

112
2023-11-09 15:04:20
Xem bản dịch

In a significant advancement in material physics, researchers from Germany and the United States have theoretically demonstrated that only extremely thin materials need to be α- RuCl3 can be placed in an optical cavity to control its magnetic state.


This discovery may pave the way for new methods of controlling material properties without the use of strong lasers.

The Role of Optical Vacuum Waves
It is crucial that cavity vacuum fluctuations alone are sufficient to transform the magnetic order of the material from serrated antiferromagnetism to ferromagnetism. This discovery, published in npj Computational Materials, is part of a recent trend in material physics research, which involves using strong lasers to alter the properties of magnetic materials.

By carefully adjusting the characteristics of the laser, researchers can fundamentally change the conductivity and optical properties of different materials. However, this method requires continuous stimulation of high intensity laser and is related to some practical problems, mainly due to the difficulty in preventing the material from heating up.

A New Material Control Method
Therefore, researchers are looking for methods to use light to achieve similar material control, but do not use strong lasers. It is in this context that theorists from the Max Planck Institute for Material Structure and Dynamics in Hamburg, Stanford University, and the University of Pennsylvania, Germany, have proposed a fundamentally different approach to changing the magnetism of real materials in cavities - without the use of lasers.

Their cooperation indicates that just a cavity is enough to α- The serrated antiferromagnetism of RuCl3 is transformed into ferromagnetism. Crucially, the team demonstrated that even in seemingly dark cavities, α- RuCl3 can also detect changes in the electromagnetic environment and correspondingly change its magnetic state.

in summary
This effect is purely a quantum effect, because in quantum theory, a cavity is never truly empty. On the contrary, the fluctuation of the light field causes the appearance and disappearance of light particles, which in turn affects the performance of the material.

The optical cavity limits the electromagnetic field to a very small volume, thereby increasing the effective coupling between light and materials, "said lead author EmilVi ñ asBostr ö m, a postdoctoral researcher in the MPSD theoretical group." Our research results indicate that careful design of the vacuum fluctuations in the cavity's electric field can lead to significant changes in the material's magnetic properties.

Since light excitation is not required, this method in principle bypasses the issues related to continuous laser driving. This is the first work to demonstrate cavity controlled magnetism in real materials, following previous research on cavity control in ferroelectric and superconducting materials.

Researchers hope that designing specific cavities will help them achieve elusive new stages of matter and better understand the subtle interactions between light and matter.

By carefully adjusting the characteristics of the laser, researchers can fundamentally change the conductivity and optical properties of different materials.

What is the quantum effect in this situation?
This is because in quantum theory, cavities are never truly empty. The fluctuation of the light field causes the appearance and disappearance of light particles, which in turn affects the performance of the material.

Source: Laser Network


Đề xuất liên quan
  • Global manufacturer JQ Laser launches a new fully automatic pipe laser cutting machine equipped with a fully automatic feeding device

    JQ LASER, a global manufacturer specializing in laser cutting machines, has launched a new fully automatic pipeline laser cutting machine model T120A.According to JQ LASER's report on the 16th, the body of this new product adopts a vertical rather than horizontal design, reducing the machining center and improving stability.In the past, traditional double chuck pipe cutting machines had a fixed fr...

    2023-10-18
    Xem bản dịch
  • Polish and Taiwan, China scientists are committed to new 3D printing dental implants

    Researchers from Wroclaw University of Technology and Taipei University of Technology in China are developing dental implants made from 3D printed ceramic structures connected to metal cores. Due to the use of biodegradable magnesium, bone tissue will gradually grow into such implants."The result will be a composite implant that can replace human teeth. Its scaffold is made of aluminum oxide...

    2024-04-17
    Xem bản dịch
  • New type of femtosecond laser: used for broadband terahertz generation and nonlinear wafer detection

    Recently, HüBNER Photonics, the leading manufacturer of high-performance lasers, has launched the latest member of the VALO femtosecond series - VALO Tidal. This laser not only represents a major leap in the fields of imaging, detection, and analysis, but also demonstrates the infinite possibilities of laser technology with its outstanding performance.The VALO Tidal femtosecond laser typically sho...

    2024-06-26
    Xem bản dịch
  • A new type of flexible reflective mirror can improve the performance of X-ray microscopy

    A research team in Japan has designed a flexible and shapable X-ray reflector, achieving significant accuracy and higher stability at the atomic level.This new technology, developed by Satoshi Matsuyama and Takato Inoue from the Graduate School of Engineering at Nagoya University, in collaboration with the Japanese Institute of Physical and Chemical Research and JTEC Corporation, improves the perf...

    2024-05-06
    Xem bản dịch
  • Intel installs the first EUV manufacturing tool that can emit lasers hotter than the sun

    Chip giant Intel announced that it has completed the assembly work of the world's first commercial high numerical aperture (NA) extreme ultraviolet lithography (EUV) scanner. This device greatly improves the resolution and feature scaling of next-generation chips by changing the optical design used to project printed images onto silicon wafers.This lithography equipment weighing 150 tons has been ...

    2024-04-22
    Xem bản dịch