Tiếng Việt

Optical Capture of Optical Nanoparticles: Fundamentals and Applications

228
2023-11-25 14:18:38
Xem bản dịch

A new article published in Optoelectronic Science reviews the basic principles and applications of optical capture of optical nanoparticles. Optical nanoparticles are one of the key elements in photonics. They can not only perform optical imaging on various systems, but also serve as highly sensitive remote sensors.

Recently, the success of optical tweezers in separating and manipulating individual optical nanoparticles has been demonstrated. This opens the door to high-resolution, single particle scanning, and sensing.

This article summarizes the most relevant results in the rapidly growing field of optical capture of individual optical nanoparticles. According to the different materials and their optical properties, optical nanoparticles can be divided into five categories: plasma nanoparticles, lanthanide doped nanoparticles, polymer nanoparticles, semiconductor nanoparticles, and nanodiamonds. For each scenario, the main progress and applications were described.

Plasma nanoparticles have a high polarization rate and high photothermal conversion efficiency, therefore, it is necessary to make a critical selection of their capture wavelength. The typical application of optical capture based on the luminescent properties of plasma nanoparticles is the study of particle particle interactions and temperature sensing. This study was conducted by analyzing the radiation absorbed, scattered, or emitted by nanoparticles.

Lanthanide doped nanoparticles have a narrow emission band, longer fluorescence lifetime, and temperature sensitive emission intensity. This article reviews the temperature sensing of batteries achieved by single optical capture of lanthanide doped nanoparticles. The structural characteristics of the main body of lanthanide doped nanoparticles allow these particles to rotate. For a fixed laser power, the rotational speed depends on the viscosity of the medium. Research has shown that this characteristic can be used to measure intracellular viscosity. In addition, the sufficient surface functionalization of lanthanide doped nanoparticles enables them to be used for chemical sensing.

Dyes are incorporated into polymer nanoparticles to emit light and facilitate tracking within optical traps. This article reviews the research on the dynamics of individual nanoparticles and the characterization of biological samples using particle luminescence tracking ability. It not only helps to gain a more thorough understanding of the optical and mechanical interactions between captured lasers and optical particles, but also points out the enormous potential of combining optical capture with fluorescence or scanning microscopy.

Semiconductor nanoparticles have received widespread attention due to their unique photoluminescence properties, such as tunable emission, low sensitivity to photobleaching, high quantum yield, and chemical stability. This article reviews the research progress on using optical tweezers to study and improve the luminescence performance of individual semiconductor nanoparticles. They also summarized research on using semiconductor particles as local excitation sources for cell imaging.

The fluorescence of nanodiamonds is caused by point defects in the diamond structure. Bibliographic research indicates that there are limited reports on optical capture of nanodiamonds. The first report on this topic shows that a single nanodiamond can be used as a magnetic field sensor. Later, optically captured nanodiamonds were also proven to be useful as cell thermometers.

This review article also reveals how the combination of optical capture and colloidal optical nanoparticles can be used for various applications. Despite the enormous potential of optical tweezers in the study of individual nanoparticles, this field is still in its early stages. Most works focus on application rather than filling knowledge gaps. There are still some unresolved issues.

This review summarizes the challenges faced by optical capture of nanoparticles, including the lack of precise formulas to describe optical force, uncertainty in spatial resolution, and possible sensing biases. This review is expected to promote the continuous enrichment and development of principles, technologies, equipment, and application research in this field.

Source: Laser Net


Đề xuất liên quan
  • Semiconductor lasers will support both TE and TM modes

    Typically, for lasers in optical communication systems, waveguide designs are used to achieve a single transverse mode. By adjusting the thickness of the surrounding area of the cladding layer and the etching depth of the ridge in the ridge waveguide device, a single mode device can be obtained. The importance of lasers is reflected in the following aspects:A chip without ridge waveguide design an...

    2023-10-20
    Xem bản dịch
  • 3D printed nanocellulose for green building applications

    The hydrogel material made of nano cellulose and algae was tested as an alternative and more environmentally friendly building material for the first time. This study from Chalmers Institute of Technology and the Wallenburg Wood Science Center in Sweden demonstrates how to 3D print rich sustainable materials into various building components, using much less energy than traditional building methods...

    2024-02-19
    Xem bản dịch
  • 3D printing giant Materialise reorganizes

    Recently, the stock price of Materialise, a well-known company in the 3D printing industry, plummeted by 35% overnight. This news was like a heavy bomb, instantly causing a storm in the industry! What exactly happened to Materialise, which was originally developing steadily? Why has there been such a significant drop in stock prices? Today, let's delve into the reasons behind this.The truth behind...

    03-03
    Xem bản dịch
  • Researchers have discovered new multiphoton effects in quantum interference of light

    An international research team from Leibniz University in Hanover and Strathclyde University in Glasgow overturned the previous hypothesis about the influence of multiphoton components in the thermal field and the interference effect of parameterized single photons. The journal Physical Review Letters published the team's research."We have demonstrated through experiments that the interference eff...

    2024-01-24
    Xem bản dịch
  • Fabrinet Laser Business Revenue Surges

    Recently, Fabrinet released its financial report for the three months ended December 27, 2024, showing that its sales and revenue exceeded expectations. During the reporting period, the company achieved sales of $834 million, a year-on-year increase of 17%. Net income increased by 25% during the same period, reaching $86.6 million.Although the growth in performance is still dominated by the optica...

    02-07
    Xem bản dịch