Tiếng Việt

2Pi Optics has launched a new type of fisheye camera based on its so-called metasurface optics

116
2024-01-05 14:03:35
Xem bản dịch

2Pi Optics has launched a new type of fisheye camera based on its so-called metasurface optics.
The company plans to showcase this technology at the large-scale technology trade show CES 2024 in Las Vegas next week.

This company, headquartered in Cambridge, Massachusetts, stated that it has created the world's leading high-resolution fisheye sensor based on optical superlens technology. This technology means that design engineers can further reduce the camera size in advanced driving assistance systems, AR/VR, drones, robots, and industrial applications.

The surge in camera based optical sensor technology is driving the work of 2Pi Optics. The company's patented technology extends the field of view of the superlens to nearly 180 degrees without affecting imaging quality, outperforming traditional wide field refractive optical devices in key aspects such as size, weight, performance, and cost-effectiveness.

The core of this work is to replace the bulky and expensive traditional wide field of view lens with a single slender flat superlens, which consists of multiple stacked lenses. This technology can create ultra compact, high-performance optical imagers and sensors. They can be used for applications such as consumer electronics, automotive sensing, industrial testing, and biomedical diagnosis.

2Pi was founded in 2021 and is a branch of the Massachusetts Institute of Technology. Its founder has been promoting superlensing technology - a thin wafer material filled with microscopic features that precisely manipulate light. The company's research has been patented.

Hu Juejun, a professor of materials science and engineering at the Massachusetts Institute of Technology and CEO of 2Pi, stated in a statement that "the refracted fisheye lens used today to capture wide-angle panoramic images has encountered design obstacles.".

Hu added, "They require 6 to 12 stacked lens components, which limits their compactness and affordability. In contrast, our design outperforms traditional refractive wide field optical devices in all aspects: size, weight, performance, and cost. Even better, 2Pi superlenses can be manufactured on a wafer scale in traditional semiconductor foundries.".

AR/VR head mounted devices: These cameras help with environmental mapping, hand/eye tracking, gesture and facial recognition. The compact size and weight are particularly advantageous for wearable devices, as their broad field of view simulates human vision and enhances user immersion.

Automotive Sensing: The 2Pi technology reduces the number of sensors required for 360 degree full coverage, improves the reliability and accuracy of ADAS, and reduces computational overhead.

Robots and Drones: Lightweight, high-resolution imaging and 3D depth sensors enhance payload capacity and improve target recognition accuracy.

Industrial testing: High performance, low-power micro machine vision cameras, such as endoscopic inspection cameras, can be flexibly deployed.

Source: Laser Net

Đề xuất liên quan
  • Beyond Limits: The Amazing Power of Water in Laser Development

    Water helps to generate ultra continuous white lasers with an extremely wide wavelength range.Researchers have made significant progress in creating ultra wideband white laser sources, which have a wide wavelength range from ultraviolet to far-infrared. These advanced lasers are used in various fields, including imaging, femtosecond chemistry, telecommunications, laser spectroscopy, sensing, and u...

    2024-02-26
    Xem bản dịch
  • Korean researchers use laser ablation to create deformable micro supercapacitors

    Recently, a research team from the Korea Institute of Industrial Technology and POSTECH University successfully utilized laser sintering pattern technology to create a deformable micro supercapacitor (MSCs), specifically designed to provide energy storage solutions for soft electronic devices. This breakthrough meets the urgent need for efficient energy storage systems in stretchable devices in...

    2024-05-30
    Xem bản dịch
  • Deep Photon Network Platform, Empowering Any Functional Photon Integrated Circuit

    The widespread application in the fields of optical communication, computing, and sensing continues to drive the growing demand for high-performance integrated photonic components. Recently, Ali Najjar Amiri of Kochi University in Türkiye and other scholars proposed a highly scalable and highly flexible deep photonic network platform, which is used to realize optical systems on chip with arbi...

    2024-03-11
    Xem bản dịch
  • Researchers use non classical light to achieve multi photon electron emission

    Strong field quantum optics is a rapidly emerging research topic that integrates nonlinear optoelectronic emission elements rooted in strong field physics with the mature field of quantum optics. Although the distribution of light particles (i.e. photons) has been widely recorded in both classical and non classical light sources, the impact of this distribution on the photoelectric emission proces...

    2024-05-20
    Xem bản dịch
  • The LANL laboratory in the United States uses quantum light emitters to generate single photon light sources

    Recently, the Los Alamos National Laboratory (LANL) in the United States has developed a method for quantum light emitters, which stacks two different atomic thin materials together to achieve a light source that generates circularly polarized single photon streams. These light sources can also be used for various quantum information and communication applications.According to Han Htoon, a researc...

    2023-09-01
    Xem bản dịch