Tiếng Việt

The rare decay of the Higgs boson may point to physics beyond the standard model

132
2024-01-26 14:10:32
Xem bản dịch

Particle physicists have detected for the first time a new decay of the Higgs boson, revealing subtle differences predicted by the standard model and potentially pointing to new physics beyond it. The research results are published in the journal Physical Review Letters.

The theoretically predicted Higgs boson since the 1960s was finally discovered in the European CERN laboratory in 2012. As a quantum field, it permeates the entire space and other particles move through it, gaining mass through their interaction with the Higgs field, which can be roughly imagined as a resistance to their motion.
Many properties of the Higgs boson, including how it interacts with other particles and their associated fields, have been measured to be consistent with the predictions of the standard model.

However, an unexplored mode of Higgs decay is theoretically predicted, where Higgs bosons occasionally decay and produce photons, namely photoquanta and Z-bosons, which are uncharged particles that transmit weak forces with two W-bosons.

Scientists from the European Center for Nuclear Research ATLAS and CMS collaborated to search for this particular Z+photon Higgs decay using proton proton collision data obtained from Run 2 from 2015 to 2018. The Large Hadron Collider at the European Center for Nuclear Research is a high-energy particle accelerator located near Geneva, Switzerland. It circulates protons in opposite directions while causing collisions at specific detector points, occurring millions of times per second.

In this operation, the energy of the collision between two protons was 13 trillion electron volts, slightly lower than the current maximum value of the machine, which is 2.1 microjoules in more relevant units. This is approximately the kinetic energy of an ordinary mosquito, or a grain of salt, traveling one meter per second.

Theoretical predictions suggest that every 10000 decays, the Higgs boson should decay into the Z boson and photon, which is the rarest decay in the standard model. It first produces a pair of top quarks or a pair of W bosons, and then they decay into Z and photons themselves.

Atlas/CMS collaboration, with the work of over 9000 scientists, has discovered the "branching ratio", which is the decay fraction of 34 decays per 10000 cycles, plus or minus 11 decays per 10000 cycles -2.2 times the theoretical value.
The measured score is too large -3.4 standard deviations higher than the theoretical value, but this number is still too small to rule out statistical luck. However, the relatively large differences suggest the possibility of meaningful differences from theory, which may be due to the fact that new particles outside the standard model are mediators beyond top quarks and W bosons.

One possibility of physics that goes beyond the standard model is supersymmetry, which assumes a symmetric relationship between half spin particles and integer spins, with each known particle having a partner with a spin difference of half an integer.

Many theoretical physicists have long been advocates of supersymmetry because it can solve many of the challenges that plague the standard model, such as the huge difference between the strength of weak forces and gravity, or why the mass of the Higgs boson, about 125 gigahertertons per volt, is much smaller than the large unified energy scale of about 1016.

Source: Laser Net

Đề xuất liên quan
  • Trends and Reflections on the Laser Industry in 2025

    In 2024, the laser industry will still reach new heights, although some predicted concerns have been fulfilled! From beginning to end, the development path of the manufacturing industry has been full of uncertainty, but as time passes and we enter a new year, new technologies continue to emerge like mushrooms after rain.In 2025, practitioners in the laser and manufacturing industries still face ma...

    01-02
    Xem bản dịch
  • Germany's leading optoelectronics industry (Jenoptik) in the first half of the gold over 4.2 billion

    On August 9, local time, Germany's leading optoelectronics company Jenoptik released its 2024 second quarter interim financial results forecast. The financial data show that the company in the challenging market environment still shows strong growth momentum.In the first half of the year, Jenoptik achieved significant growth in revenue and earnings before interest, taxes, depreciation and amortiza...

    2024-08-15
    Xem bản dịch
  • The constantly developing world of all-weather laser satellite communication

    Using light beams for communication is not a new idea, even outside of Star Trek, Star Wars, and other similar fantasy stories. Scientist and science fiction writer Arthur Clark predicted that beam communication, at that time modern satellite communication was just a dream.In 1975, the magazine published an article about laser communication or laser communication equipment. The demonstrati...

    2023-12-01
    Xem bản dịch
  • Progress in the study of ultrafast electron dynamics using short light pulses

    When electrons move in molecules or semiconductors, their time scale is unimaginably short. The Swedish German team, including Dr. Jan Vogelsang from the University of Oldenburg, has made significant progress in these ultrafast processes: researchers are able to track the dynamics of electrons released on the surface of zinc oxide crystals using laser pulses with nanoscale spatial resolution and p...

    2024-01-08
    Xem bản dịch
  • Nikon launches COOLSHOT 20i GIII laser rangefinder with two measurement display modes: golf and actual distance

    Nikon Vision, a subsidiary of Nikon Corporation, is pleased to announce the launch of the COOLSHOT 20i GIII laser rangefinder for golfers, which is Nikon's small and lightweight model in the COOLSHOT series.While maintaining the lightweight and compact size of the COOLSHOT 20i GII, the new model notifies users through brief vibrations that the distance to the flagpole has been measured.When measur...

    2024-03-27
    Xem bản dịch