Tiếng Việt

Developing nanocavities for enhancing nanoscale lasers and LEDs

141
2024-01-29 13:42:27
Xem bản dịch

As humanity enters a new era of computing, new small tools are needed to enhance the interaction between photons and electrons, and integrate electrical and photon functions at the nanoscale. Researchers have created a novel III-V semiconductor nanocavity that can limit light below the so-called diffraction limit, which is an important step towards achieving this goal.

In the journal Optical Materials Letters, researchers have demonstrated that the modal volume of their new nanocavity is one order of magnitude lower than previously shown in III-V group materials. III-V group semiconductors have unique characteristics that make them suitable for optoelectronic devices.

The significant spatial limitation of light demonstrated in this work improves the interaction between light and matter, allowing for greater LED power, lower laser threshold, and higher single photon efficiency.

The study was conducted by scientists from the Nanophotonics Center at the Technical University of Denmark. Their goal is to study a new type of dielectric optical cavity that allows for deep subwavelength optical confinement by using the concept they call extreme dielectric confinement.

EDC cavities may generate extremely efficient computers, where deep subwavelength lasers and photodetectors are integrated into transistors to reduce energy consumption by improving the interaction between light and matter.

In current research, the EDC cavity in III-V semiconductor indium phosphide was initially constructed by researchers using an orderly mathematical technique that relaxed geometric constraints and optimized the topology. Then, they used dry etching and electron beam lithography to construct the structure.

"The characteristic size of EDC nanocavities is as small as a few nanometers, which is crucial for achieving extreme light concentrations, but they also have significant sensitivity to manufacturing changes. We attribute the successful implementation of cavities to the improved accuracy of the InP manufacturing platform, which is based on electron beam lithography followed by dry etching," Xiong added.

The second stage of topology optimization is based on the relatively small dielectric feature size achieved by researchers through improved manufacturing methods. After the last optimization cycle, the mode volume of the nanocavity is only 0.26 ³, Among them λ  Is the wavelength of light, and n is its refractive index.

This achievement is four times smaller than the diffraction limit volume of the commonly referred to nanocavity, which is equivalent to a lightbox with a side length of half the wavelength.

Researchers have pointed out that although silicon has recently produced cavities with similar characteristics, III-V group semiconductors have direct band to band transitions, while silicon does not. These transformations are necessary for utilizing Purcell enhancement provided by nanocavities.

Xiong concluded, "Prior to our work, it was uncertain whether III-V group semiconductors would achieve similar results as they did not benefit from advanced manufacturing technologies developed for the silicon electronics industry.".

Currently, researchers are attempting to further reduce pattern volume by improving manufacturing accuracy. In order to manufacture useful nanolasers or nanoLEDs, they also hope to use EDC cavities.

Source: Laser Net

Đề xuất liên quan
  • The globalization of three-color laser technology will be further accelerated

    Recently, the IFA2023 Consumer Electronics Show in Berlin, Germany opened, Hisense exhibited "three-color laser projection family bucket" attracted the attention of media and tourists from all over the world.Since Hisense's young fashion brand Vidda launched a series of three-color laser projection, its accumulation based on three-color laser technology is competing globally and has become a...

    2023-09-04
    Xem bản dịch
  • The breakthrough of coherent two-photon lidar overcomes distance limitations

    Schematic diagram of experimental setupNew research has revealed advances in light detection and ranging technology, providing unparalleled sensitivity and accuracy in measuring the distance of distant objects.This study was published in the Physical Review Letters and was the result of a collaboration between Professor Yoon Ho Kim's team at POSTECH in South Korea and the Center for Quantum Scienc...

    2023-12-08
    Xem bản dịch
  • In situ bubble point measurement using spectroscopy

    Develop and research a new downhole bubble point pressure measurement technology suitable for black oil and volatile oil to enhance well analysis using spectroscopy.Representative fluid characteristics are required for a wide range of oilfield lifespans, such as the initial scale and production planning of reservoir hydrocarbon reserves. Fluid characteristics are usually obtained from laboratory s...

    2024-01-31
    Xem bản dịch
  • The use of laser equipment to recover refractory materials can reduce 800,000 tons of carbon dioxide emissions

    Refractory material can withstand high temperature above 1500℃. They are essential materials for industrial furnaces that produce glass or ceramics, non-ferrous metals and steel. The service life of manufactured refractory products can range from a few days to many years, depending on the material, the temperature in the melting vessel and other operating parameters. As a result, although ...

    2023-09-04
    Xem bản dịch
  • First time! Significant progress has been made in low repetition rate fully polarization maintaining nine cavity fiber lasers

    Recently, the research team of the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, reported for the first time a low repetition frequency full polarization maintaining 9-shaped cavity fiber laser at 915 nm. The relevant research results were published in Optics Express under the title "Low repetition rate 915 nm ...

    2024-05-07
    Xem bản dịch