- Không có dữ liệu
Tiếng Việt
- English
- 简体中文
- 繁体中文
- Français
- Русский
- Italiano
- 日本語
- 한국어
- Português
- Deutsch
- Español
- Türkçe
- Ελληνικά
- Nederlands
- Tiếng Việt
- Polski
Recently, a research group led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences developed a concentration independent pressure sensing method based on two-color laser absorption spectrum for high-temperature combustion diagnosis.
The research findings are published in Optics Letters.
Aircraft engines are developing towards high-temperature and high-pressure combustion to improve thermodynamic efficiency. Pressure is an important parameter for monitoring engine performance and diagnosing engine faults. However, traditional contact pressure sensors not only interfere with the combustion flow, but are also limited by the temperature tolerance of the sensor material.
In this study, researchers developed a non-contact pressure sensing method for high-temperature environments and demonstrated it at temperatures up to 1300 K. The focus of this study is on how to address the impact of molecular concentration on gas pressure measurement in high-temperature environments.
Scientists have found that the collision broadening of two absorption lines coupled can eliminate concentration variables. With this discovery, scientists can achieve concentration independent pressure measurements. Considering that the main product of combustion systems fueled by hydrocarbons is H2O, they validated this finding with two H-absorption lines, where H2O is located near 1343 nm and 1392 nm on a carefully designed heating absorption cell. The time resolution and uncertainty of pressure measurement are respectively 50 μ Realize at s and 3%.
Professor Liu Kun said, "Our findings provide valuable tools for pressure sensing in high-temperature environments and can promote the development of multi parameter diagnosis in laser based combustion science.".
Source: Laser Net