Tiếng Việt

New technology can efficiently heal cracks in nickel based high-temperature alloys manufactured by laser additive manufacturing

151
2024-03-15 14:10:04
Xem bản dịch

Recently, Professor Zhu Qiang's team from the Department of Mechanical and Energy Engineering at Southern University of Science and Technology published their latest research findings in the Journal of Materials Science. The research team has proposed a new process for liquid induced healing (LIH) laser additive manufacturing of cracks. By controlling micro remelting at grain boundaries to introduce interstitial liquid film filling defects, cracks in components can be "welded" at the microscale. This research achievement is of great significance for breaking through the industry challenge of laser additive manufacturing of high crack sensitivity alloys.

Paper graphic abstract


Liquid induced hearing of cracks in nickel based superalloy fabricated by laser powder bed fusion - ScienceDirect
Laser additive manufacturing is a revolutionary technology that solves the problem of personalized and complex metal component integral forming, with huge application prospects. However, only over ten out of the hundreds of commonly used engineering alloys can stably achieve crack free printing, which is far from meeting the needs of replacing traditional processes.

Compared to processes such as casting and welding, laser additive manufacturing technology has inherent properties of micro zone ultra normal metallurgy and rapid solidification, making it more prone to cracking. There are two existing methods to deal with cracks in laser additive manufacturing. One is to suppress cracks during the printing process by adjusting the alloy solidification range, grain morphology, and component temperature gradient. However, there are significant differences in the effectiveness of different alloy systems, with narrow process windows and poor stability, making it difficult to completely eliminate cracks; The second is to use hot isostatic pressing (HIP) post-treatment to close cracks. However, HIP cannot repair surface defects and requires further processing to remove surface materials, which undoubtedly weakens the core advantage of additive manufacturing technology in forming complex structures.

In addition, the extremely high working conditions make HIP equipment complex and extremely expensive, making it only suitable for a small number of high value-added metal additive manufacturing components.

In this regard, the research team proposed the liquid induced healing (LIH) technology based on the technical idea of introducing intergranular continuous liquid film to "weld" cracks, and verified the feasibility and progressiveness of the LIH technology by taking the typical high crack sensitivity alloy IN738LC as the test alloy. The research results showed that the mechanical properties of the alloy were significantly improved after LIH technology treatment. In terms of tensile properties, the LIH state is higher than the cast state and hot isostatic pressing state, while in terms of high-temperature creep, the LIH state alloy exhibits properties comparable to precision casting and far higher than the hot isostatic pressing state.

It is reported that compared with the most reliable HIP technology currently available, LIH technology has significant advantages in defect elimination efficiency, universality, convenience, and cost. Firstly, it breaks through the technical limitations of its inability to heal surface defects, making it suitable for pore healing treatment of complex components without the need for additional machining to remove the surface; Secondly, the pressure required by LIH is less than 1/20 of that of HIP technology, eliminating safety hazards of high-pressure special equipment and simplifying equipment construction and cost; Thirdly, there is no need for insulation treatment, while HIP needs to be insulated at high temperatures for several hours, thereby improving process efficiency and reducing energy consumption costs.

Source: Sohu

Đề xuất liên quan
  • Oxford University Tokamak Energy Company develops laser technology for fusion power plants

    Tokamak Energy is currently developing a new laser measurement technology for controlling extreme conditions inside fusion power plants.The laser based dispersion interferometer system is being tested at the company's headquarters in Oxford and will be installed on its world record breaking fusion machine ST40 later this year.Clean, safe, and renewable nuclear fusion power generation occurs inside...

    2024-03-14
    Xem bản dịch
  • Showcasing the world's fastest photonics alignment system for SiPh chips on Photonics West

    With its proprietary fast multi-channel photon alignment algorithm and professional high-precision machinery, PI helps customers improve production efficiency to participate in the rapidly growing silicon photonics market. Over the past decade, PI has been continuously expanding its range of automatic photon alignment engines and will launch new systems at both ends of the spectrum in this year's ...

    2024-01-19
    Xem bản dịch
  • A US research team has developed a new type of photonic memory computing device

    Recently, a research team from the University of California, Santa Barbara has successfully developed a new type of photonic memory computing device that integrates non reciprocal magneto-optical technology. This device achieves high-speed, high-energy efficiency, and ultra-high durability photon computing by utilizing the non reciprocal phase shift phenomenon. The research findings, titled "Integ...

    2024-10-24
    Xem bản dịch
  • Micro ring resonators with enormous potential: hybrid devices significantly improve laser technology

    The team from the Photonic Systems Laboratory at the Federal Institute of Technology in Lausanne has developed a chip level laser source that can improve the performance of semiconductor lasers while generating shorter wavelengths.This groundbreaking work, led by Professor Camille Br è s and postdoctoral researcher Marco Clementi from the Federal Institute of Technology in Lausanne, represe...

    2023-12-11
    Xem bản dịch
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong laser and matter, electrons with short pulse width and high energy are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite a wide range of ultrafast electromagnetic radiation, as well...

    2024-04-30
    Xem bản dịch