Tiếng Việt

The research team has solved decades long challenges in the field of microscopy

148
2024-04-27 14:34:15
Xem bản dịch

When observing biological samples under a microscope, if the medium in which the objective lens is located is different from the sample, the light beam will be interfered with. For example, when observing a water sample with a lens surrounded by air, the light bends more strongly in the air around the lens than in water.

This interference can cause the measured sample depth to be smaller than the actual depth. Therefore, the sample appears to have flattened.
"This problem has a long history, and since the 1980s, some theories have been proposed to determine a correction coefficient for determining depth. However, all of these theories assume that this coefficient is constant and independent of sample depth. Associate Professor Jacob Hoogenboom of Delft University of Technology explained that although later Nobel laureate Stefan Hell pointed out in the 1990s that this proportion may be related to depth, this situation still occurred.".

Sergey Loginov, a former postdoctoral fellow at Delft University of Technology, has now demonstrated through calculations and mathematical models that samples do exhibit stronger flattening near the lens than away from it. Doctoral student Daan Boltje and postdoctoral researcher Ernest van der Wee subsequently confirmed in the laboratory that the correction factor is related to depth.

This research result is published in the journal Optica.
The last author, Ernest Van der Wee, said, "We have compiled the results into a network tool and software that is provided with the article. With these tools, anyone can determine precise correction factors for their experiments.".

Researcher Daan Boltje said, "Thanks in part to our computational tools, we can now very accurately cut out proteins and their surrounding environment from biological systems, and determine their structure using an electron microscope. This type of microscopic examination is very complex, time-consuming, and incredibly expensive. Therefore, ensuring that the correct structure is observed is crucial."

Researcher Daan Boltje said, "With our more precise depth measurements, we only need to spend less time and money on samples that miss biological targets. Ultimately, we can study more relevant proteins and biological structures. Determining the precise structure of proteins in biological systems is crucial for understanding and ultimately preventing abnormalities and diseases."“

In the provided network tools, you can fill in the relevant details of the experiment, such as refractive index, aperture angle of the objective lens, and wavelength of the light used. Then, the tool will display a depth related scaling factor curve. You can also export this data for your own use. In addition, you can also combine the results with the results of existing theories to draw.

Source: Physicist Organization Network

Đề xuất liên quan
  • Researchers develop innovative quantum dot lasers for advanced frequency combs

    Researchers at the University of California, Santa Barbara have made significant breakthroughs in laser technology, introducing a groundbreaking quantum dot mode-locked laser that allows for independent generation of amplitude and frequency modulation combs from a single device. This cutting-edge dual mode laser paves the way for the creation of small-sized and energy-efficient frequency combs for...

    2023-11-17
    Xem bản dịch
  • Additive manufacturing of free-form optical devices for space use

    A group of researchers and companies are using the iLAuNCH Trailblazer program to develop and identify new optical manufacturing processes and materials for space flight applications, and demonstrating them in space cameras.The University of South Australia, together with SMR Australia and VPG Innovation, will utilize an emerging optical manufacturing technology called freeform optics, which is no...

    2023-12-04
    Xem bản dịch
  • CO2 laser cutting machine for battery shell shaped parts: an innovative tool in energy technology manufacturing

    The development of new energy technology has made battery technology the engine for advancing clean energy. In battery manufacturing, the cutting of battery shell shaped parts is a crucial step. CO2 laser cutting machines have become an innovative tool for promoting the development of this field due to their high efficiency and precision. This article will delve into the important characteristics ...

    2023-12-25
    Xem bản dịch
  • Trumpf China 25 Years: From Model Factory to Global Strategic Fortress

    On March 14, 2000, Trumpf established its first company in China - Trumpf Metal Sheet Products Co., Ltd., headquartered in Taicang, 50 kilometers northwest of Shanghai. Nowadays, Taicang has become a global strategic stronghold for the company. 25 years ago, this production base was originally used to demonstrate sheet metal processing production for Chinese enterprises. In the seventh year afte...

    03-26
    Xem bản dịch
  • Laser giant announces launch of new fiber laser platform

    Recently, Coherent Corp. announced the launch of the EDGE FL TM high-power fiber laser series, tailored specifically for cutting applications in the machine tool industry. The power levels of the EDGE FL series range from 1.5kW to 20kW, redefining the balance between value and performance to meet the growing demand for high-power, reliable laser sources in fiber laser cutting.With the increasing d...

    2024-10-23
    Xem bản dịch