Tiếng Việt

Based on Transform Optics: Realizing an Ideal Omnidirectional Invisible Cloak in Free Space

183
2024-04-29 16:03:41
Xem bản dịch

A team led by Professor Ye Dexin and Professor Chen Hongsheng from Zhejiang University, as well as Professor Yu Luo from Nanyang University of Technology, conducted practical research on full parameter transformation optical devices. The research team has designed and implemented an all parameter omnidirectional invisibility cloak based on the theory of linear transformation optics and omnidirectional matching transparent metamaterials, which can hide large objects in free space.

The research findings were published in the National Science Review under the title of "Omnidirectional Transformation Optical Devices with All Parameters". Dr. Yuan Gao from Zhejiang University was the first author, and Professor Yu Luo, Professor Chen Hongsheng, and Professor Ye Dexin were the corresponding authors.

In 2006, Professor Pendry from Imperial College London, UK, proposed transformation optics, which describes the correspondence between electromagnetic wave propagation paths and material composition parameters, providing a universal and powerful method for controlling electromagnetic waves.

In the past decade, transformation optics has developed rapidly, and various new optical devices have been designed through transformation optics, such as invisibility cloaks, electromagnetic illusion devices, and concentrators. However, the composition parameters of optical media transformation are anisotropic and often uneven or have singular values, making it difficult to achieve.

For example, the omnidirectional invisibility cloak achieved through experiments so far has always simplified the material parameters. Simplified design sacrifices impedance matching, thereby reducing the performance of transformation optical devices.

To address these issues, the research team designed a two-dimensional all parameter omnidirectional planar invisibility cloak based on linear transformation optics, which is composed of only two homogeneous materials. The composition parameters of the first material are anisotropic, with both zero and extreme values, and electromagnetic waves propagating along the optical direction have infinite phase velocities.

Design an ideal omnidirectional cloak in free space. (a) Stealth design based on linear transformation optical elements. (b) A schematic diagram of the actual cloak. (c) Simulate (I, II, III) and measure (IV, V, VI) stealth performance.

By using this material, electromagnetic waves can bypass the invisible region, achieving omnidirectional impedance matching and zero phase delay. The second material also has anisotropic composition parameters, which can achieve phase compensation under omnidirectional impedance matching, and electromagnetic waves propagating in the optical direction have sub cavity phase velocity.

In the experimental verification, researchers used these two materials with TM polarization wave full parameter composition parameters.
The first material is achieved using a subwavelength metal patch array with Fabry Perot resonance, while the second material is achieved using a structure composed of traditional I-type electric resonators and split ring resonators.

Finally, the researchers measured the magnetic field around the omnidirectional cloak composed of the first two materials under different angles of TM polarization wave incidence, and the results showed that it has excellent stealth performance.

This study presents for the first time a fully parametric omnidirectional invisibility cloak in free space, which can hide large objects under any incident light. The achieved invisibility cloak can be immediately used to suppress the scattering cross-section of targets in radar communication and bistable detection.

The method proposed in this study also has a profound impact on the practical application of other full parameter transformation optical devices.

Source: Physicist Organization Network

Đề xuất liên quan
  • Xi'an Institute of Optics and Fine Mechanics has made new progress in the research of attosecond high spatiotemporal resolution imaging

    The attosecond light source has the characteristics of ultra short pulse width, short wavelength, high coherence, and high-precision synchronous control, and has extremely high potential for application in the field of ultrafast imaging. Especially when the attosecond light source reaches the "water window" band, oxygen and hydrogen atoms have weak absorption of X-rays in this band, so water is re...

    2024-10-14
    Xem bản dịch
  • The new generation of special optical fibers is suitable for the application of quantum technology

    Recently, physicists from the University of Bath in the UK have developed a new generation of specialized optical fibers to address the data transmission challenges of the future quantum computing era. This achievement is expected to promote the expansion of large-scale quantum networks. The research results were published in the latest issue of Applied Physics Letters Quantum.The highly anticipat...

    2024-08-02
    Xem bản dịch
  • South Korean DE&T will open new subsidiaries in the United States and Canada

    Recently, DE&T, a South Korean manufacturer of secondary batteries and display laser equipment, announced that the company will further expand its overseas business by opening new subsidiaries in the United States and Canada. According to its claim, this move is to carry out maintenance services for laser equipment locally. As of now, DE&T's overseas subsidiaries have increased from two to...

    04-08
    Xem bản dịch
  • Fulu and Longview begin design work on laser melting devices

    Longview Fusion Energy Systems and Fluor have taken another step towards commercialization of laser fusion power plants.According to the memorandum of understanding signed by the two companies, Fulu will design the factory for Longview Fusion Energy Systems. The two companies collaborated and signed a memorandum of understanding in 2023 to leverage Fulu's experience in developing and constructing ...

    2024-03-13
    Xem bản dịch
  • Zygo showcases 3D optical metrology instruments on Space Comm

    Zygo Corporation, a business unit of AMETEK, announced that it will be showcased at the D28 booth of the Space Comm Expo held in Farnborough, UK from March 6th to 7th this year.Space Comm showcases the end-to-end supply chain of products, services, and applications that provide information and technological development for commercial aerospace enterprises, governments, and defense organizations, p...

    2024-03-01
    Xem bản dịch