Tiếng Việt

Advanced OPA enhances the energy of attosecond imaging ultra short pulses

131
2024-05-11 16:03:34
Xem bản dịch

The attosecond level ultra short laser pulse provides a powerful method for detecting and imaging ultra short processes, such as the motion of electrons in atoms and molecules.

Although ultra short laser pulses can be generated, generating ultra short and high-energy pulses is a continuous challenge. In order to expand the photon energy, photon flux, and continuous bandwidth of isolated attosecond pulses, it is necessary to develop stable, high-energy, and long wavelength single period laser sources.

Researchers at the RIKEN Advanced Photonics Center have developed a method for generating high-energy single cycle MIR pulses. This method is called Advanced Dual Chirp Optical Parametric Amplification (Advanced DC-OPA), which increases the energy of a single cycle laser pulse by 50 times and can be used to generate extremely short pulses with a peak power of 6 terawatts.

"At present, the output energy of attosecond lasers is extremely low," said researcher Eiji Takahashi. "If they are to be used as light sources for a wide range of fields, increasing their output energy is crucial."

Researchers used two types of nonlinear crystals to develop advanced DC-OPA - bismuth triborate oxide (BiB3O6) and lithium niobate doped with magnesium oxide (MgO: LiNbO3). The crystal magnifies the complementary regions of the spectrum.

Takahashi said, "The advanced DC-OPA for amplifying single cycle laser pulses is very simple, based only on a combination of two nonlinear crystals." "What surprised me was that such a simple concept provided a new amplification technology and brought breakthroughs in the development of high-energy, ultrafast lasers."

The damage threshold of nonlinear crystals limits the energy scalability of OPA under high pulse energy. Takahashi said, "The biggest bottleneck in the development of high-energy and ultrafast infrared laser sources is the lack of effective methods for directly amplifying single cycle laser pulses." "This bottleneck results in a millijoule barrier in the energy of single cycle laser pulses."

The advanced DC-OPA method overcomes the bottleneck of pulse energy scalability using single cycle IR/MIR laser systems.

The team expects that advanced DC-OPA methods will drive the development of attosecond laser technology forward. Takahashi said, "We have successfully developed a new laser amplification method that can increase the intensity of a single cycle laser pulse to terawatt level peak power." "This is undoubtedly a significant leap in the development of high-power attosecond lasers."

Due to the excellent energy scalability of the advanced DC-OPA method, laser pulses with higher pulse energy and fewer pulse duration cycles can be achieved based on different crystal combinations and higher pump energy. The extension of pulse energy can promote high-throughput detection conditions in strong field physics research.

Takahashi believes that by capturing the motion of electrons, attosecond lasers have made significant contributions to fundamental science. "They are expected to be used in a wide range of fields, including observing biological cells, developing new materials, and diagnosing medical conditions," he said.

The ultimate goal of Takahashi is to exceed the speed of the attosecond laser and generate shorter pulses. "By combining a single period laser with higher-order nonlinear optical effects, it is possible to generate optical pulses with a time width of Ze seconds (one Ze second=10-21 seconds)," he said. "My long-term goal is to open the door to research on Zeosecond lasers and open up the next generation of ultra short lasers after Atosecond lasers."

Source: Laser Net

Đề xuất liên quan
  • NASA's laser reflector instrument helps to accurately locate Earth measurements

    The most famous use of GPS satellites is to help people understand their location, whether it is driving cars, ships or planes, or hiking in remote areas. Another important but little-known use is to distribute information to other Earth observation satellites to help them accurately locate measurements of our planet.NASA and several other federal agencies, including the US Space Force, the US Spa...

    2023-12-12
    Xem bản dịch
  • Scientists from the SLAC National Accelerator Laboratory in the United States have launched the world's most powerful X-ray laser

    Scientists at the SLAC National Accelerator Laboratory have launched the world's most powerful X-ray laser, which will be used for in-depth atomic and molecular research.It is a significant upgrade to its predecessor, as its brightness has increased by 10000 times.The upgraded laser facility also uses superconducting accelerator components, allowing it to operate at low temperatures near absolute ...

    2023-11-17
    Xem bản dịch
  • Laser power supply leading enterprise Lianming Power has completed a B-round financing of tens of millions of RMB

    Shenzhen Lianming Power Supply Co., Ltd. (hereinafter referred to as "Lianming Power") announced the completion of a B-round financing of tens of millions of yuan in the near future. The fund managed by Jiangsu Jiuyu Investment Management Co., Ltd. completed the A-round investment in Lianming Power in December 2021. Recently, Jiuyu Investment, as an old shareholder, continued to increase its inves...

    2023-09-23
    Xem bản dịch
  • Tianjin University's Photoacoustic Remote Sensing Microscopy Technology Breakthrough New Heights

    Recently, Professor Tian Zhen's team from Tianjin University has made a breakthrough in the field of photoacoustic remote sensing microscopy technology and successfully developed a new type of non-destructive testing method. This technology uses Kaplin high-power femtosecond laser as the key light source, further optimizing the solution to the internal flaw detection limitations of inverted chips,...

    2024-04-16
    Xem bản dịch
  • Han's Laser New Product Debuts at 2025 Munich Shanghai Light Expo

    New product launch of "Blue Hurricane" red blue integrated laser1. Ultra high power: The "red blue integrated" laser, with optimized optical path design and heat dissipation system, can stably output power exceeding industry standards, meeting high demand application scenarios.2. Dual high brightness: Integrating advanced wavelength modulation technology and materials science, both red and blue l...

    03-07
    Xem bản dịch