Tiếng Việt

RTX Raytheon Company will develop ultra wide bandgap semiconductors for ultraviolet lasers

131
2024-09-30 14:11:00
Xem bản dịch

The UWBGS program will develop and optimize ultra wide bandgap materials and manufacturing processes for the next revolution in the semiconductor electronics field.

US military researchers need to develop new integrated circuit substrates, device layers, junctions, and low resistance electrical contacts for the new generation of ultra wide bandgap semiconductors. They found a solution from RTX company.

On September 13, 2024, personnel from the Defense Advanced Research Projects Agency (DARPA) located in Arlington, Virginia, announced a $5.3 million contract with the RTX Raytheon division in Arlington, Virginia, for the Ultra Wide Bandgap Semiconductor (UWBGS) project.

The UWBGS project will focus on developing and optimizing ultra wide bandgap materials and manufacturing processes to embrace the next revolution in the semiconductor electronics field. Ultra wide bandgap technology represents a new type of semiconductor that can be used for future RF and high-power electronics, deep ultraviolet electro-optic, quantum electronics, and system applications that must operate in harsh environments.

UWBGS will lay the foundation for producible and reliable high-performance ultra bandgap devices for various defense and commercial applications, such as high-power RF switches; High power density RF amplifier; High power RF protection device; High voltage switch; High temperature electronic devices; And deep ultraviolet lasers and light-emitting diodes.

This project will address some key technical challenges, such as achieving high-quality ultra wide bandgap materials, customizing the electrical properties of ultra wide bandgap materials, creating homogeneous and heterogeneous structures with abrupt junctions and low defect density, and ultra-low resistance electrical contacts. UWBGS will produce device testing structures to quantify improvements in these areas. To achieve the goal, the plan will fully utilize the latest developments in ultra wide bandgap materials.

Experts from the DARPA Microsystems Technology Office are focusing on two types of ultra wide bandgap devices: low defect density substrates with diameters greater than 100 millimeters; A device layer with high doping efficiency, mutated homojunctions and heterojunctions, low junction defect density, and ultra-low resistance electrical contacts.

DARPA researchers have stated that ultra wide bandgap materials such as aluminum nitride, cubic boron nitride, and diamond have the potential to revolutionize the application of semiconductor electronic devices, such as high-power RF switches and limiters, high-power density RF amplifiers for radar and communication systems, high-voltage switches for power electronics, high-temperature electronic devices and sensors for extreme environments, deep ultraviolet light emitting diodes (LEDs), and lasers.

However, the poor quality of ultra wide bandgap materials today limits their performance, and scientists must overcome multiple technical challenges to make this technology a success.

During the three-year UWBGS program, Raytheon engineers will focus on improving the material quality of device layers and junctions, as well as enhancing the electrical quality of metal contacts.

To this end, Raytheon Company will focus on three areas: large-area ultra wide bandgap substrates; Doping agents for ultra wide and wide forbidden homojunctions and heterojunctions; And a mixture of ultra-low resistance electrical contacts and ultra wide width forbidden materials.

Source: Yangtze River Delta Laser Alliance

Đề xuất liên quan
  • Strategy Networks Utilizes Ekinops for Optical Network Upgrade

    Strata Networks is one of the fastest growing communication cooperatives in Utah, and has chosen Ekinops360 from Ekinops as the platform to upgrade its optical transmission network.Strata is headquartered in Roosevelt, Utah, with a network spanning the Uintah Basin, the Vasatch Front, and Denver. The cooperative continues to expand and improve its fiber optic footprint to differentiate its telepho...

    2023-11-21
    Xem bản dịch
  • More penetrating than X-rays μ Meson imaging is expected to be advanced with high-power lasers

    μ Mesons are naturally occurring subatomic particles that can penetrate much deeper dense matter than X-rays. Therefore, μ Meson imaging can enable scientists to capture images of nuclear reactors, volcanoes, tsunamis, and hurricanes. However, this process is slow, as it occurs naturally μ The low flux of mesons requires several months of exposure time for the image.It is understood that ...

    2023-11-01
    Xem bản dịch
  • BluGlass successfully raised $5.87 million to accelerate GaN laser production and delivery

    Recently, BluGlass, a leading global semiconductor development company, successfully completed its stock purchase plan (SPP) and raised $5.87 million in funds (excluding costs). This SPP provides eligible shareholders with the opportunity to subscribe to up to $100000 in new shares of BluGlass at a discounted price of $0.037 per share, along with free additional options. This initiative has gained...

    2024-04-12
    Xem bản dịch
  • Relevant teams of the Chinese Academy of Sciences breakthrough the application difficulties of ultra compact gas laser system in special scenarios

    Recently, Liang Xu's team from the Laser Center of Anguang Institute, Chinese Academy of Sciences, Hefei Institute of Materia Medica, conducted research on corona discharge fluid control and its application in the gas laser system, proposed an electric field flow field coupling analysis model suitable for multi pin corona discharge scenarios, and revealed the flow velocity distribution characteris...

    2024-07-20
    Xem bản dịch
  • German team develops and promotes laser technology for formable hybrid components

    Scientists from the Hanover Laser Center (LZH) in Germany are studying two laser based processes for producing load adapted hybrid solid components.From a transaction perspective, mixing semi-finished products can help save materials and production costs, but if the components that need to be replaced are made of expensive materials, these materials need to meet high requirements in future use, su...

    2023-08-16
    Xem bản dịch