Tiếng Việt

The efficiency of crystalline silicon solar cells has exceeded 27% for the first time, and Longi's research results have been published in Nature

134
2024-10-18 14:06:40
Xem bản dịch

Recently, Longi Green Energy Technology Co., Ltd. (hereinafter referred to as "Longi"), as the first unit, published a research paper titled "Silicon heterojunction back contact solar cells by laser patterning" online in the journal Nature, reporting for the first time the research results of breaking through 27% of the photoelectric conversion efficiency of crystalline silicon cells through full laser patterning technology. This breakthrough marks the first time that the efficiency of crystalline silicon solar cells has exceeded 27%, setting a new milestone for photovoltaic technology and industry based on crystalline silicon materials.


It is understood that this study demonstrates the enormous potential of back contact (BC) batteries in achieving high efficiency and low cost. In order to achieve this high conversion efficiency, the Longi Central Research Institute team has conducted in-depth technical research in two key areas: silicon wafer and surface passivation contact technology. The team has developed a new type of dense heterojunction passivation contact, breaking through the industry's long-standing bottleneck of heterojunction preparation at 180-210 ℃, and achieving a process temperature of 240 ℃. At the same time, the R&D team has developed a full laser graphic process and low indium, silver free metallization scheme, which not only improves efficiency but also ensures the economic viability of BC battery technology, laying the foundation for low-cost and efficient BC battery production in the future.

In May of this year, Longi announced that its independently developed back contact crystalline silicon heterojunction solar cell (HBC) had a photovoltaic conversion efficiency of 27.30%, once again breaking the world record for single crystal silicon photovoltaic cell conversion efficiency. This is another breakthrough after Longi set the world record for HBC battery conversion efficiency of 27.09% in December 2023, and also represents Longi's confidence and strength in BC battery technology with high conversion efficiency and mass production process.

Over the past two decades, the manufacturing of crystalline silicon cells has undergone three major technological iterations. In the era of Al BSF (aluminum diffusion back surface field), the battery efficiency is less than 20%; In the PERC (passivated emitter back contact) era, the efficiency is increased to below 25%; The TOPCon (Tunnel Oxide Passivation Contact) technology upgrade that began last year has enabled the battery efficiency to exceed 25%. Looking ahead, over 26% of mass-produced battery technologies will be led by BC (Back Contact) technology. And the research achievements of Longi this time have pointed out the development direction of over 27% of ultra efficient battery technology for the industry: to promote efficiency improvement through the combination of heterojunction technology and BC structure infrastructure.

As a leading global solar technology company, LONGi adheres to a long-term development philosophy and is committed to continuously leading the technological changes in the industry through technological innovation. The publication of this research paper is the third article published by the Longi Institute of Central Research in the top academic journal Nature since 2024. The first article reported the world record for the efficiency of flexible silicon heterojunction cells based on different thicknesses, the second article reported the world record for the efficiency of perovskite/crystalline silicon stacked cells, and this article reported the world record for the efficiency of crystalline silicon cells based on BC structure.

This series of research results not only reflects Longi's profound accumulation in cutting-edge technology fields, but also further consolidates the company's global leading position in photovoltaic technology innovation. In the future, Longi will continue to cooperate with upstream and downstream industries to promote the practical application and landing of the new generation of BC technology, and help the photovoltaic industry move towards a more efficient and sustainable future.

Source: Yangtze River Delta Laser Alliance

Đề xuất liên quan
  • The company has made key breakthroughs in the development of laser micromachining systems

    3D-Micromac AG, a provider of laser micromachining systems, has announced new advances in laser micromachining solutions for magnetic sensors, micro-leds, manufactured power devices and advanced packaging of semiconductors.Since the first working laser came out more than 60 years ago, lasers have been widely used in the industrial market. Uwe Wagner, CEO of 3D-Mircomac, said: "In the semic...

    2023-08-04
    Xem bản dịch
  • An innovative technology that can make light "bend"

    A research team from the University of Glasgow in the UK drew inspiration from the phenomenon of clouds scattering sunlight and developed an innovative technology that can effectively guide or even "bend" light. This technology is expected to achieve significant breakthroughs in fields such as medical imaging, cooling systems, and even nuclear reactors. The relevant research results were published...

    2024-11-11
    Xem bản dịch
  • The First Operation of Two Color Mode in Infrared Free Electron Laser

    The Fritz Haber Institute of the Max Planck Institute in Berlin has achieved a technological milestone. The infrared free electron laser operates in dual color mode for the first time. This globally unique technology makes it possible to conduct experiments on synchronous dual color laser pulses, opening up new possibilities for research.There are over a dozen free electron lasers worldwide, with ...

    2024-02-18
    Xem bản dịch
  • $75 million, this laser equipment manufacturer will be acquired

    Rocket Lab USA continues its path of vertical integration and has signed an exclusive but non binding agreement with MynaricAG, a German laser communication terminal (LCT) supplier and Rocket Lab supplier, to acquire the company for $75 million in cash or stock.If Mynaric achieves its revenue target, it will pay an additional revenue of up to $75 million. This acquisition depends on whether Myna...

    03-25
    Xem bản dịch
  • The United States is expected to use "AI+lasers" to deal with space debris in the future

    Due to the increasing threat of space debris in low Earth orbit around the Earth, space agencies around the world are becoming increasingly concerned about this. According to a new study funded by the National Aeronautics and Space Administration (NASA), it may be possible to send space debris that may be at risk of colliding with orbiting spacecraft to safer orbits through a laser network deploye...

    2023-10-20
    Xem bản dịch