简体中文

More penetrating than X-rays μ Meson imaging is expected to be advanced with high-power lasers

100
2023-11-01 14:59:21
查看翻译

μ Mesons are naturally occurring subatomic particles that can penetrate much deeper dense matter than X-rays. Therefore, μ Meson imaging can enable scientists to capture images of nuclear reactors, volcanoes, tsunamis, and hurricanes. However, this process is slow, as it occurs naturally μ The low flux of mesons requires several months of exposure time for the image.

It is understood that scientists at the Lawrence Livermore Laboratory (LLNL) Ignition Facility (NIF) in the United States have proposed a plan called "Science and Safety Intensive Compact μ The meson source "(ICMuS2) aims to quickly generate μ Mesons, using high-power lasers to accelerate capture μ The time required for meson images, thereby reducing the required exposure time.

This project is a huge challenge for particle physics detection. John Harton from the High Energy Physics Group in the Department of Physics at Colorado State University said. John Harton will lead the Colorado State University team responsible for developing collaborative projects μ The meson detector, he said:“ μ The number of meson particles far exceeds that of other particles, and we are using various tools to screen them.

μ The key step in sub generation is the wake left by the ultra intense short laser pulse accelerating the propagation of electrons in the plasma.
ICMuS2 plans to develop a portable, laser based μ The technical design of meson emitters has a flux greater than that of naturally occurring ones μ Mesons are several orders of magnitude larger and can be used for a wide range of imaging applications. This includes special nuclear material exploration, mining, and geophysics. Brendan Reagan, from NIF and the Advanced Photonics Technology Project in Photonics Science, stated that in addition to laser development, the project will also combine advanced numerical simulations of high-energy particle physics, plasma physics, high-performance computing systems, as well as system engineering and integration.

This work was carried out in collaboration with the extreme light infrastructure ERIC (ELI) of the Czech ELI beamline facility, Colorado State University, University of Maryland (UMD), Lockheed Martin, XUV Lasers, and Lawrence Berkeley National Laboratory (LBNL). LLNL also participated in another activity under the MuS2 project led by LBNL.

The preliminary experiment will be conducted using a plasma waveguide developed by UMD in an advanced laser at the Extreme Photonics High Repetitive Rated Watt Laser Facility at Colorado State University. High energy acceleration and μ The meson generation experiment will be conducted at ELI Beamlines using its L4-Aton 10-PW laser system.

The first phase of this four-year plan will focus on principle verification experiments and the impact of laser generated μ A clear demonstration of mesons. The second stage will attempt to demonstrate high energy μ Production and Transportability of Mesons μ Design of meson sources.

In addition, all aspects of the plan are based on the development of large-aperture Thulium laser technology under the guidance of the LLNL laboratory's research and development program, as well as the investment in laser driven accelerators by the High Energy Physics and Accelerator Research and Production Office of the US Department of Energy Science Office.

Source: Laser Manufacturing Network

相关推荐
  • Laser Uranium Enrichment Company (GLE) accelerates development

    Paducah, located in western Kentucky, may become the location of the world's first commercial facility to adopt this technology.Since 2016, Global Laser Enrichment Company (GLE) has partnered with the US Department of Energy to use its unique molecular process to concentrate 200000 tons of depleted uranium "tails" stored at the former Padiuka gas diffusion plant in western Kentucky.After years of ...

    2024-06-22
    查看翻译
  • Rapid and convenient preparation of small-sized metal nanoparticles using microchip lasers

    Liquid pulse laser ablation is a reliable and versatile technique for producing metal nanoparticles in solution. Its advantages include no reducing agent, simple operation, high purity, no need for purification steps, and environmental processing conditions, making it the preferred method for traditional metal NP preparation.The widespread adoption of PLAL in scientific and industrial research has...

    2024-01-30
    查看翻译
  • Chinese femtosecond laser company completes Pre-A round of financing

    Recently, Qingdao Free Trade Laser Technology Co., Ltd. successfully completed the Pre-A round of financing. This financing is led by Shandong Letong Science and Technology Industry Finance New Energy Industry Development Fund Center (Limited Partnership). This financing will focus on attracting professional talents, including optical engineering experts, algorithm engineers, etc., in order to a...

    2024-11-19
    查看翻译
  • Due to breakthroughs in microchip photonics, microwave signals have now become very accurate

    Zhao Yun/Columbia Engineering Company provided an advanced schematic of a photonic integrated chip, which aims to convert high-frequency signals into low-frequency signals using all optical frequency division.Scientists have built a small all optical device with the lowest microwave noise ever recorded on integrated chips.In order to improve the performance of electronic devices used for global n...

    2024-04-01
    查看翻译
  • Progress has been made in the research of phase modulation of terahertz programmable metasurfaces based on free carrier plasmonic dispersion effect

    Recently, the team of Situ Guohai and Guo Jinying from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, and the School of Microelectronics at Shanghai University collaborated to propose a terahertz phase controlled programmable metasurface design scheme based on free carrier plasma dispersion effect. The rela...

    2024-07-26
    查看翻译