简体中文

Short pulse lasers in the form of chips use the so-called mode coupling principle

92
2023-11-10 14:56:31
查看翻译

Nowadays, lasers that emit extremely short flashes can be found in many research laboratories, but they usually fill the entire room. Physicists have now successfully reduced this laser to the size of a computer chip. As they reported in the journal Science, their research can lay the foundation for extremely compact detectors.

A team led by Qiushi Guo from the California Institute of Technology in Pasadena has constructed their prototype semiconductor for short pulse lasers based on gallium arsenide, which is used to generate laser beams. They combined it with a crystal of another compound called lithium niobate, which is used as a conductor for light waves. Researchers arranged these two components on the basis of silicon and silicon dioxide to produce laser chips with a size of only a few millimeters.

Like other short pulse lasers, the new micro laser uses the so-called mode coupling principle: the light waves in the laser match each other in a mutually amplified manner, resulting in extremely short light pulses. Researchers successfully achieved this by applying high-frequency electric fields adapted to laser pulses. Previously, larger short pulse lasers also used this principle. But in the new laser, they cleverly arranged tiny waveguides so that they could keep the laser correspondingly small.

Trillionths of a second of short infrared flash
In testing, the prototype emitted short flashes of less than five picoseconds - millionths of a second infrared light. Their wavelength was 1065 nanometers and they repeated about 10 billion times per second. When doing so, the maximum power of the laser is half a watt, which is 500 times that of a traditional laser pen.

In the future, micro lasers can pave the way for small detectors, such as detecting bacteria and viruses in smartphones. They reflect the incident laser in a unique way, so they can be detected using highly sensitive sensors. Other applications lie in chips that use light to process digital data, making them faster than other systems. Even atomic clock lasers can be used in chip form. These can achieve accurate navigation without GPS signal, "Guo said. Considering these applications, researchers now hope not only to further increase the power of short pulse lasers, but also to make the optical pulses shorter - as low as a few femtoseconds.

Source: Laser Network

相关推荐
  • The application of laser technology in the automated production line of energy storage/power battery PACK

    Lithium batteries are highly favored in the fields of 3C digital and new energy vehicles due to their high energy density, environmental characteristics, and fast charging and discharging. Welding, as a crucial link in the manufacturing process of lithium batteries, has a decisive impact on battery performance and quality. Laser welding technology is increasingly playing an important role in the l...

    2023-12-18
    查看翻译
  • The official launch of FV4000 and FV4000MPE microscopes aims to redefine scientific imaging

    Introduction to FLUOVIEW ™ The FV4000 confocal laser scanning microscope and FV4000MPE multiphoton laser scanning microscope have made breakthroughs in imaging technology, enabling researchers to make new scientific discoveries. The FV4000 and FV4000MPE microscopes aim to redefine scientific imaging, providing higher accuracy, lower noise, and higher sensitivity, setting new standards for im...

    2023-11-03
    查看翻译
  • Hyperspectral imaging technology: a comprehensive guide from principles to applications

    Hyperspectral imaging technology is a highly anticipated innovation in the field of science and engineering today. It not only integrates spectroscopy and imaging technology, but also has wide applications in various industries and research fields. This article will delve into the basic principles, working mechanisms, and applications of hyperspectral imaging in different fields.Introduction to hy...

    2024-04-16
    查看翻译
  • Leading listed laser company Novanta moves to new location

    Recently, Novanta, a pioneer in advanced laser and optical subsystems for medical and industrial applications, announced that the company will relocate from its original official address (Emery Court in Stockport, UK) to a state-of-the-art 70000 square foot factory facility in nearby Orion Business Park. Its business capabilities will also be expanded fourfold to serve an expanding team and custom...

    2024-08-08
    查看翻译
  • Important Discovery in Aluminum Alloy Laser Coaxial Fusion Additive Manufacturing

    Aluminum alloy has unique advantages such as lightweight, high strength, and excellent corrosion resistance, and is highly favored in the aerospace manufacturing field. Laser Coaxial Fusion Additive Manufacturing (LCWAM) adopts beam shaping technology, which uses wire as the deposition material to melt and stack layer by layer. Compared to traditional side axis wire feeding technology, laser coaxi...

    2024-04-29
    查看翻译