简体中文

High sensitivity visualization of ultrafast carrier diffusion using a wide field holographic microscope

238
2023-12-25 14:16:07
查看翻译

A sketch of the imaging and holographic parts of a transient holographic microscope, including a pulse sequence, to illustrate the signal modulation method. By imaging the pinhole array at the sample position, a diffraction limited excitation spot array can be created, allowing for the simultaneous collection of transient data around 100 excitation spots.

Femtosecond transient microscopy is an important tool for studying the ultrafast transport characteristics of excited states in solid samples. Most implementations are limited to photoexcitation of a single diffraction limit point on the sample and tracking the temporal evolution of subsequent carrier distribution, thus covering a very small sample area.

Recently, scientists from Italy and Spain have demonstrated how to construct an all optical phase-locked camera by using off-axis holography, significantly increasing the field of view of ultrafast microscopes. The camera decouples the signal demodulation speed from the maximum detector frame rate.

In this original work published in the journal Ultrafast Science, researchers demonstrated simultaneous transient imaging of dozens of individual nanoobjects, with the entire field of view excitation being desirable. It is not yet clear how to apply new holographic techniques in solid-state samples that require diffraction limit excitation. Ideally, a diffraction limited excitation point array covering the entire field of view will be generated, so that multiple points in the large sample area can be detected simultaneously.

The article "High sensitivity visualization of ultrafast carrier diffusion using a wide field holographic microscope" demonstrates how to achieve this feature by imaging a pinhole array at the sample position. This not only helps to obtain statistical information about sample photophysics, but also for uniform samples, the signals of all light spots can be averaged, greatly improving the signal-to-noise ratio.

Source: Laser Net

相关推荐
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong lasers and matter, short pulse width and high energy electrons are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite ultrafast electromagnetic radiation in a wide range of wavelengt...

    2024-06-21
    查看翻译
  • Hyperspectral imaging technology: a comprehensive guide from principles to applications

    Hyperspectral imaging technology is a highly anticipated innovation in the field of science and engineering today. It not only integrates spectroscopy and imaging technology, but also has wide applications in various industries and research fields. This article will delve into the basic principles, working mechanisms, and applications of hyperspectral imaging in different fields.Introduction to hy...

    2024-04-16
    查看翻译
  • Microcomb launches a simplified design for powerful lasers based on chips

    Researchers at the University of Rochester have created new micro comb lasers that go beyond previous limitations and have simple designs suitable for various applications. The research results are published in Nature Communications.Optical frequency combs are optical measurement instruments that have revolutionized atomic clocks, spectroscopy, metrology, and other fields. However, the difficulty ...

    2024-05-25
    查看翻译
  • Enlightra and DESY Hamburg developed an improved and scalable comb laser

    Laser technology startup Enlightra collaborates with DESY Hamburg to develop and design more stable and efficient comb lasers. This work demonstrates a microresonator with programmable synthetic reflection, providing tailored injection feedback for driving lasers. This technology has significantly improved compared to traditional self injection locking technology and can be produced using standard...

    2024-01-26
    查看翻译
  • Research progress on the interaction between strong laser and matter Electromagnetic induced transparency effect in plasma physics

    The transmission of electromagnetic waves (such as lasers) in plasma is a fundamental issue in plasma physics. In general, electromagnetic waves cannot be transmitted in high-density plasma, but their transmission and energy transfer play a crucial role in applications such as fast ignition laser fusion, laser particle acceleration, and ultra short and ultra bright radiation sources.In 1996, S. fr...

    2024-03-21
    查看翻译