简体中文

Ultra fast plasma for all optical switches and pulse lasers

96
2024-03-26 14:19:24
查看翻译

Plasmology plays a crucial role in advancing nanophotonics, as plasma structures exhibit a wide range of physical properties that benefit from local and enhanced light matter interactions. These characteristics are utilized in many applications, such as surface enhanced Raman scattering spectroscopy, sensors, and nanolasers.

In addition to these applications, the ultrafast optical response of plasma is also a key characteristic that has been used to achieve optical signal switching across different spectral bands, which is crucial for advanced optical logic circuits and telecommunications systems.
Recently, optical switches have become an important component of the development of all optical computing and signal processing, among which these optical switch devices require enhanced response speed, modulation depth, and wide spectral tunability.

The latest developments in the manufacturing and characterization of plasma nanostructures have stimulated the search for sustained effects in their potential applications in the field of photonics. Professor Liu and his team focus on the role of plasma in photonics, introducing the latest developments in ultrafast plasma materials, with a focus on all optical switches.

By elaborating on the ultrafast process revealed by experimental and theoretical methods, the basic phenomena of plasma light matter interaction and plasma dynamics were discussed, and the use of ultrafast plasma for all optical switching and pulse laser generation was comprehensively explained, with a focus on device design and performance.

Here, they introduce the light matter interactions related to the ultrafast plasma response observed in different plasma materials and structures in the first part, and then explain the theoretical and experimental methods developed to study the ultrafast mechanisms in plasmons.

In the following chapters of this article, they discuss and summarize ultrafast plasma optical switching systems based on the classification of plasma metasurfaces such as precious metals, phase change hybrid materials, conductive oxides, and waveguides. These ultrafast plasma metasurfaces are further divided by spectral bands in the visible and near-infrared ranges. The last section discusses the use of plasma ultrafast optical switches to generate ultrafast pulse lasers.

Ultra fast plasma has been widely used in an increasing number of photonics applications. This review article will serve as a reference for researchers to explore new processes in photonics by combining plasma.
The research results are published in the journal Ultrafast Science.

Source: Laser Net

相关推荐
  • HGTECH Laser's New Product Debuts at the 2025 Munich Shanghai Light Expo

    New Product for Wafer Testing Probe Card Manufacturing Equipment Project This project adopts vision guided laser precision cutting to separate the probe from the crystal disk, and then generate a product mapping image for use in the next process. When picking up the probe, multi-point reference surface fitting technology is used to achieve non-contact probe suction and avoid force deformation. A...

    03-07
    查看翻译
  • Light Adv. Manuf. | Laser Direct Writing Assists Perovskite Optoelectronic Applications

    IntroductionMetal halide perovskites have excellent optoelectronic properties and have become the undisputed "star" materials in the semiconductor field, attracting great attention from both academia and industry. With a large amount of research investment, the application of perovskite covers various optical and optoelectronic fields such as single photon sources, micro nano lasers, photodetector...

    2024-03-25
    查看翻译
  • Revealing the essence of optical vortices: a step towards understanding the interaction between light and matter

    In a groundbreaking scientific study published in Volume 13 of the Scientific Report, researchers reported on the results of Young's double slit interference experiment using oscillating vortex radiation under a photon counting system. The experiment involves using a spiral oscillator to emit second harmonic radiation in the ultraviolet range. Using an ultra narrow bandpass filter in the low curre...

    2023-12-29
    查看翻译
  • Micro devices output powerful lasers at room temperature, reducing power consumption by 7 times

    Recently, researchers at the Rensselaer Polytechnic Institute in the United States have invented a miniature device thinner than human hair, which can help scientists explore the essence of light and matter and unravel the mysteries of the quantum field. The most important advantage of this technology is that it can work at room temperature without the need for complex infrastructure. The resea...

    2024-05-29
    查看翻译
  • Pressure sensing using dual color laser absorption spectroscopy

    The research team led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences recently designed a concentration independent pressure sensing technology for high-temperature combustion diagnosis. This method is based on dual color laser absorption spectroscopy.The results of this study have been published in Optics Letters.Aircraft eng...

    2024-03-09
    查看翻译