简体中文

Launching the world's strongest laser at a cost of 320 million euros

133
2024-04-03 18:05:29
查看翻译

   Beijing, April 1st (Reporter Liu Xia) - The world's most powerful laser has been activated recently. On March 31st, the Physicist Organization Network reported that the system can enable laser pulses to reach a peak of 10 terawatts (1 terawatt=100 terawatts=1015 watts) within 1 femtosecond (1000 trillions of a second), which is expected to promote revolutionary progress in multiple fields from medicine to basic physics and space.

   The high-tech center to which this laser belongs is located in Romania, mainly funded by the European Union, with a cost of 320 million euros, utilizing the invention of French scientists such as Gerald Muru.

   Scientists have been committed to manufacturing more powerful lasers. In the mid-1980s, the Muru team invented Chirped Pulse Amplification (CPA) technology, which can increase the power of lasers while maintaining their intensity. Its working principle is to stretch an ultra short laser pulse in time, amplify it, and then squeeze it together again to create the shortest and strongest laser pulse to date.

   Mulu was awarded the 2018 Nobel Prize in Physics for developing a method for producing high-intensity, ultra short light pulses. This technology is expected to be widely applied in fields such as nuclear physics and particle physics, medicine, etc. In the medical field, this technology has promoted the development of cataract and refractive surgery.

   Muru pointed out that they will start with a tiny glowing "seed" with minimal energy, which will be magnified millions of times. They will use these ultra-high voltage pulses to generate more compact and cheaper particle accelerators to destroy cancer cells. Other possible applications include processing nuclear waste by reducing its radioactive duration, cleaning up accumulated debris in space, and so on.

相关推荐
  • DR Laser releases its 2024 semi annual report, achieving dual growth in revenue and profit

    A few days ago, DR laser released 2024 half-yearly report, the company realized operating income of 906 million yuan in the first half of the year, a year-on-year increase of 34.40%; net profit of 236 million yuan, a year-on-year increase of 35.51%. For the reasons of performance growth, DR laser said in the half-yearly report, the company's first half of the order continued to acceptance brough...

    2024-08-23
    查看翻译
  • The LANL laboratory in the United States uses quantum light emitters to generate single photon light sources

    Recently, the Los Alamos National Laboratory (LANL) in the United States has developed a method for quantum light emitters, which stacks two different atomic thin materials together to achieve a light source that generates circularly polarized single photon streams. These light sources can also be used for various quantum information and communication applications.According to Han Htoon, a researc...

    2023-09-01
    查看翻译
  • Scientists use glass to create femtosecond lasers

    Image source: Federal Institute of Technology in Lausanne, SwitzerlandScience and Technology Daily, Beijing, September 27th (Reporter Zhang Jiaxin) Commercial femtosecond lasers are manufactured by placing optical components and their mounting bases on a substrate, which requires strict alignment of optical components. So, is it possible to manufacture femtosecond lasers entirely from glas...

    2023-09-28
    查看翻译
  • Implementing and studying non Hermitian topological physics using mode-locked lasers

    A mode-locked laser is an advanced laser that can generate very short optical pulses with durations ranging from femtoseconds to picoseconds. These lasers are widely used for studying ultrafast and nonlinear optical phenomena, but they have also been proven to be applicable to various technological applications.Researchers at the California Institute of Technology have recently been exploring the ...

    2024-03-27
    查看翻译
  • The scientific research team of Shenzhen University of Technology has discovered a new mechanism of attosecond pulse coherent radiation

    Recently, a team of Professor Ruan Shuangchen and Professor Zhou Cangtao from Shenzhen University of Technology proposed for the first time internationally a physical solution based on the generation of attosecond pulses and subperiodic coherent light shock radiation from a superluminal plasma wake field, and explained a new coherent radiation generation mechanism dominated by collective electron ...

    2023-10-14
    查看翻译