简体中文

Filatek: Leading the Development of Laser, Shining "Additive Prince"

157
2024-04-12 16:20:24
查看翻译

In recent years, the field of laser technology has received widespread attention from the outside world. At that time, the Munich Shanghai Electronic Production Equipment Exhibition was successfully held in Shanghai, and Suzhou Feilaitek Laser Technology Co., Ltd. (hereinafter referred to as "Feilaitek"), a leading enterprise in the field of industrial laser 3D dynamic focusing systems, appeared at this exhibition. OFweek has the honor of inviting Yang Haiqing, the General Manager of Feilaitek, to conduct an interview with us, allowing him to reveal the latest achievements and future vision of Feilaitek.

Diversified exhibits showcase strength
As a leader in industrial laser dynamic focusing systems, Philatek has carefully presented a series of high-quality products at this exhibition, focusing on shaping its benchmark image in the laser field. Most of the exhibits of Feilaitek this time are standardized products, covering various light source adaptation solutions and segmented market applications. For the blue ocean markets of semiconductors and 3D printing, Feilaitek has launched a series of specialized products, showcasing Feilaitek's strategic vision in the field of laser processing technology.

The focus of this exhibition is undoubtedly the star product of Feilaitek - "Additive Prince", which is a multi laser dynamic focusing 3D printing galvanometer unit. This product is an innovative achievement of Feilaitek in response to the key research and development plan of the Ministry of Science and Technology during the 14th Five Year Plan period. Feilaitek has accurately identified the key bottlenecks faced by the processing of large format and large volume products in the additive manufacturing industry, and successfully developed the "Additive Prince", thereby driving the innovation and progress of related industries.

The Additive Prince can combine two beams of the same or different wavelength bands, achieving application scenarios with different process requirements. Its modular design supports full coverage arrays, with a minimum processing area of 300X300mm. At the same time, by incorporating forward-looking technologies such as redundant design and dynamic data allocation, "Additive Prince" greatly reduces the risk of printing interruption caused by single point failures, improves the production efficiency and yield rate of 3D printers, and has gained widespread industry recognition and praise.

Adhere to market orientation and actively face the future
The strong technical strength of Feilaitek, especially its advantages in dynamic focusing optical design and software development, makes it unique in the laser market. Feilaitaike always adheres to a market-oriented approach and firmly believes that technological innovation should be based on solving problems and meeting market demands. The high precision dynamic focusing system, modular integration capability, and software platform supported dynamic data scheduling mechanism constitute its core technological advantages, endowing the product with a solid foundation to meet the complex needs of various industries.

Looking ahead to the future, Feilaitaike is full of confidence in the trend of intelligence and automation in the laser welding market. It plans to launch a second-generation adaptive laser processing workstation that integrates control algorithms, big data models, and artificial intelligence technology to achieve independent optimization of process parameters in complex environments and promote the intelligent upgrading of dynamic focusing systems.

In addition, the company's product line will further expand to fields such as automotive manufacturing, additive manufacturing, semiconductor processing, and photovoltaic manufacturing. Through a deep understanding of industry characteristics, modular design will be used to achieve product standardization and rapid deployment. At the same time, process parameters will be flexibly adjusted to accurately match the specific needs of each industry, effectively driving industrial upgrading.

Taking the automotive industry as an example, currently, Feilaitaike's products have been widely used in the automotive manufacturing industry. The hollow and transparent effect of interior and exterior decorations is a popular trend in automotive manufacturing, and the implementation of this design must rely on the power of lasers. By utilizing the laser and 3D dynamic focusing system technology of Feilaitek, it is possible to achieve one-time laser translucent carving of complex surfaces during the processing, reduce production processes, customize carving content, and other functions, thereby helping the automotive manufacturing industry to quickly upgrade.

As an industry solution provider, Feilaitek always puts application implementation first, deeply understands and accurately responds to the real needs of the industry, defines and innovates products based on industry attributes, rather than just pursuing standardization or one-sided technological leadership. In the view of Philatek, laser technology, as a "universal processing tool", is not an independent field. Only when laser technology is closely integrated with the needs of various industries can its inherent value be fully unleashed, thereby driving innovation and progress in related industries.

Source: OFweek

相关推荐
  • Researchers use non classical light to achieve multi photon electron emission

    Strong field quantum optics is a rapidly emerging research topic that integrates nonlinear optoelectronic emission elements rooted in strong field physics with the mature field of quantum optics. Although the distribution of light particles (i.e. photons) has been widely recorded in both classical and non classical light sources, the impact of this distribution on the photoelectric emission proces...

    2024-05-20
    查看翻译
  • Measuring invisible light through an electro-optic cavity

    Researchers have developed a new experimental platform that can measure the light wave electric field captured between two mirrors with sub periodic accuracy. This electro-optical Fabry Perot resonant cavity will achieve precise control and observation of the interaction between light and matter, especially in the terahertz (THz) spectral range. The research results were published in the journal "...

    02-19
    查看翻译
  • Progress in research on neodymium doped strontium aluminate lanthanum magnesium laser crystals by Shanghai Optics and Machinery Institute

    Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of Nd: ASL (Sr0.7Nd0.05La0.25Mg0.3Al22.7O19) laser crystals, and the related achievements were published in Infrared Physics&Technology under the title of "Tunable laser operations on Nd doped cont...

    2024-04-17
    查看翻译
  • From Colored Glass Windows to Lasers: Nanogold Changes Light

    For a long time, craftsmen have been fascinated by the bright red color produced by gold nanoparticles scattered in colored glass masterpieces. The quantum origin of this optical miracle has always been mysterious, until modern advances in nanoengineering and microscopy revealed the complexity of plasma resonance.Now, researchers are preparing to push nano plasma technology, which was once used fo...

    2024-01-02
    查看翻译
  • Stable lasers developed with mixed materials focus on autonomous vehicle, etc

    Researchers printed microscale lenses directly onto optical fibers, allowing them to tightly combine the fibers and laser crystals into a single laser oscillator.Scientists have used 3D printing polymers in new micro optical technology, which can reduce the size of lasers and be used in various new applications, including the laser radar system for autonomous vehicle technology and cancer treatmen...

    2024-01-22
    查看翻译