简体中文

Amazemet uses Siemens Xcelerator software for scaling metal 3D printing

141
2024-04-18 17:04:51
查看翻译

Polish metal 3D printing company Amazemet uses the Xcelerator software combination from industrial manufacturing company Siemens.
The spin off company of Warsaw University of Technology is using Siemens workflow management software to develop its metal powder atomizer and 3D printing post-processing equipment.

Amazemet was founded in 2016, and its ultrasonic atomization device is capable of producing metal powders internally for additive manufacturing.
In the past four years, the company has expanded its business scale and strengthened its team. Therefore, it attempts to centralize its data to prevent costly errors, such as sending incorrect designs into production.

"That's why we chose Siemens Xcelerator for digitization to simplify the constantly growing data in our design and production technology processes," said Amazemet CEO Ł Ukasz Ż Rodowski explained. The Amazemet engineering team is utilizing Siemens Xcelerator software to help push its products to the market and further expand the company's operational scale.

"The Siemens Xcelerator product portfolio has improved our efficiency, providing a single platform for managing documents, product development, and manufacturing processes. Its scalability supports our continuous growth, simplifies document management, accelerates design, and eliminates scalability barriers." Ż Rodowski added.

Amazemet adopts Siemens Xcelerator
Amazement is using Siemens NX software and Teamcenter X software, both of which are part of the Xcelerator product portfolio. These platforms are used to assist in the development of post-processing technologies, including inFurner high vacuum furnaces.

This furnace can be heated to 1600 ℃ and is designed to provide reliable heat treatment for 3D printed metal parts. This is an important step in metal additive manufacturing, which is crucial for improving mechanical properties such as hardness, strength, and fatigue resistance.

Siemens NX is a computer-aided design/manufacturing (CAD/CAM) software designed for the design, analysis, and manufacturing processes in 3D printing. NX CAD allows designers to create 3D models, analyze product design feasibility, and share data to accelerate production cycles. The platform also enables users to generate lattice structures, perform construction simulations, and prepare 3D printed parts.

Ż Rodowski stated that NX software significantly shortens product development time. It also improves the stability and reliability of rePowder, and the company's ultrasonic atomizer can produce powdered metal raw materials from any alloy material.

Amazemet also utilizes Teamcenter X to implement cloud based product lifecycle management and collaboration tools. According to reports, this ensures that all files and service documents of the company can be accessed anytime, anywhere.

Mariusz Zabielski, Vice President and Regional Manager of Siemens Digital Industrial Software for Poland and the Czech Republic, believes that accessibility challenges still need to be overcome before additive manufacturing becomes more widely adopted.

"I am pleased to see a Polish company pushing new technologies to the market and enhancing Poland's position as a truly innovative melting pot in the field of additive manufacturing," Zabielski said.

"Amazemet is another perfect example of how innovators and pioneers in various industries adopt the Siemens Xcelerator industry software portfolio to digitally transform and expand their business, and fulfill their commitment to widely adopting metal additive manufacturing."

Using software to accelerate metal 3D printing
Siemens Xcelerator suite is not the only software aimed at optimizing metal 3D printing. At the Additive Manufacturing User Group (AMUG) 2024 meeting held in Chicago last month, Belgian 3D printing company Materialise launched its e-Stage for Metal+software.

This product uses physics based modeling to simplify data and prepare for laser powder bed melting (LPBF) 3D printing, and automatically generates support structures.

The e-stage of Metal+aims to improve the accessibility of metal additive manufacturing and predict areas that are prone to deformation during the 3D printing process. Then generate support to alleviate this situation, prevent 3D printing failures, and simplify post-processing. According to Materialise, this shortens the learning curve of metal 3D printing and promotes its adoption in industrial manufacturing applications.

Last year, 1000 Kelvin, a software company headquartered in Berlin, announced the full commercialization of AMAIZE AI driver software for metal 3D printing. AMAIZE uses artificial intelligence (AI) to create 3D printing formulas, ensuring accurate 3D printing with just one attempt.
After uploading the file to the AMAIZE cloud, the software will analyze the parts and automatically solve any thermal mechanical problems by optimizing scanning strategies and process parameters. This eliminates the need for expensive component simulation software and minimizes the number of physical iterations.

Source: Laser Net

相关推荐
  • STL's new 160 micron fiber optic can meet emerging network and pipeline capacity requirements

    STL unveiled its new 160 micron fiber optic for the first time at the 2023 India Mobile Conference Trade Show.The company claims that its 160 micron fiber optic was conceptualized and developed at its Center of Excellence in Maharashtra, India, and its cable capacity is three times that of traditional 250 micron fiber optic. STL Company.After the launch of 160 micron fiber at the 2023 India Mobile...

    2023-11-01
    查看翻译
  • Nat. Commun.: Two color orthogonal polarized organic light-emitting diode

    In recent years, linearly polarized organic light-emitting diodes have greatly enriched the application scenarios of polarization optics and optoelectronics industries. The low-cost and large-area preparation of linearly polarized organic light-emitting diodes with high polarization, strong directional emission, narrow bandwidth, and multi-color adjustability is an important challenge in the curre...

    2024-02-29
    查看翻译
  • Application of Airborne Lidar Calibration Board in Various Fields

    With the rapid development of technology, airborne LiDAR technology has become one of the key technologies in modern surveying, remote sensing, navigation and other fields. As an important component of this technology, the airborne LiDAR calibration board plays a crucial role in ensuring the accuracy and stability of the radar system. This article will explore the application and importance of air...

    2024-04-08
    查看翻译
  • Tsinghua University has made progress in the field of magnetic field and laser composite processing

    The National Key Laboratory of Interface Science and Technology for High end Equipment at Tsinghua University has made progress in the field of magnetic field and laser composite processing - magnetic field assisted laser shock strengthening of Ti6Al4V alloy. The relevant research was published as a cover article titled "Magnetic Field Assisted Laser Shock Peening of Ti6Al4V Alloy" in the journal ...

    2023-09-16
    查看翻译
  • New laser technology unlocks deuterium release in aluminum layers

    In a recent study, quadrupole mass spectrometry was used to measure the number of deuterium atoms in the aluminum layer.A recent study led by the National Institute of Laser, Plasma, and Radiation Physics and Sasa Alexandra Yehia Alexe from the University of Bucharest explored the details of laser induced ablation and laser induced desorption techniques using a 1053 nm laser source. The study was ...

    2023-11-25
    查看翻译