简体中文

Cambridge scientists have achieved the long-sought quantum state stability in new 2D materials

137
2024-05-27 16:04:49
查看翻译

Scientists at the Cavendish laboratory have discovered the spin coherence of hexagonal boron nitride (hBN) under normal conditions, providing new prospects for the application of quantum technology.

Researchers at Cavendish Laboratory have found that a single "atomic defect" in a material called hexagonal boron nitride (hBN) maintains spin coherence at room temperature and can be manipulated using light.

Spin coherence refers to the ability of electron spins to retain quantum information over time. This discovery is of great significance because materials that can exhibit quantum properties under environmental conditions are very rare.

The research results published in the journal Natural Materials further confirm that the spin coherence available at room temperature is longer than researchers initially imagined. "The results indicate that once we write a quantum state onto the spin of these electrons, this information will be stored for~millionths of a second, making the system a very promising platform for quantum applications," said Carmem M. Gilardoni, co-author of the paper and postdoctoral researcher Rubicon at Cavendish Lab.

This may seem short, but interestingly, this system does not require special conditions - it can even store spin quantum states at room temperature and does not require a large magnet.

Characteristics of hexagonal boron nitride

Hexagonal boron nitride (hBN) is an ultra-thin material composed of stacked single atom thick layers, resembling a piece of paper. These layers are bonded together through intermolecular forces. But sometimes, there are "atomic defects" in these layers, similar to crystals in which molecules are trapped. These defects can absorb and emit light within the visible light range, and have clear optical transitions, and they can act as local traps for electrons. Due to these "atomic defects" in hBN, scientists can now study the behavior of these captured electrons. They can study spin properties, which allow electrons to interact with a magnetic field. What is truly exciting is that researchers can use the light in these defects to control and manipulate electron spin at room temperature.

This discovery paves the way for future technological applications, especially in sensing technology.

However, as this is the first time anyone has reported the spin coherence of the system, there is still a lot of research to be done before it matures enough for technical applications. Scientists are still studying how to make these defects better and more reliable. They are currently exploring to what extent we can extend spin storage time and whether we can optimize system and material parameters that are important for quantum technology applications, such as the stability of defects over time and the quality of light emitted by the defect.

Future Outlook and Conclusion

"The use of this system has emphasized the power of basic material research to us. As for the hBN system, as a field, we can use the excited state dynamics in other new material platforms for future quantum technology," said Dr. Hannah Stern, the first author of the paper, who conducted this research in the Cavendish Laboratory and is now a researcher at the Royal Society University and a lecturer at the University of Manchester.

In the future, researchers are considering further developing the system to explore many different directions from quantum sensors to secure communication.

"Every promising new system will broaden the toolkit of available materials, and every step towards this direction will drive the scalable implementation of quantum technology. These results confirm the prospects of layered materials achieving these goals," concluded Professor Mete Atat ü re, the head of the Cavendish Laboratory leading the project.

Source: Focus Media Network

相关推荐
  • Researchers are studying lasers for controlling magnetic ripple interactions

    One vision for computing the future is to use ripples in magnetic fields as the fundamental mechanism. In this application, magnetic oscillators can be comparable to electricity and serve as the foundation of electronic products.In traditional digital technology, this magnetic system is expected to be much faster than today's technology, from laptops and smartphones to telecommunications. In quant...

    2024-02-11
    查看翻译
  • LOTMAXX Announces the Launch of a Multifunctional 3D Printer with Laser Cutting Function

    LOTMAXX has announced the launch of the ET model, a new type of 3D printer that can also be used as a laser cutting machine. According to the manufacturer, the core component is a fast direct extruder with a printing speed of up to 500 millimeters per second.LOTMAXX ET features an all metal casing with a printing volume of 250 x 250 x 265 mm. According to the announcement, as a special feature, th...

    2023-11-09
    查看翻译
  • Scientists have developed a palm sized femtosecond laser using a glass substrate

    Researchers at the Federal College of Technology in Lausanne (EPFL) have shown that femtosecond lasers suitable for palm size can be manufactured using glass substrates.Can femtosecond lasers made entirely of glass become a reality? This interesting question prompted Yves Bellouard, the head of the Galata laboratory at the Federal Institute of Technology in Lausanne, to embark on a journey after y...

    2023-10-04
    查看翻译
  • X photon 3D nanolithography

    Virtual and Physical Prototypes: X-ray laser direct writing 3D nanolithography.Multi-photon polymerization (MPP), also known as 3D nanoprinting, has been investigated using wavelength-tunable femtosecond lasers. At a fixed pulse width of 100 fs, any spectral color in the range of 500nm to 1200nm can be used, which reveals the interaction of more subtle photophysical mechanisms than two-photon phot...

    2023-09-11
    查看翻译
  • Europe builds an independent supply chain for Alexander laser crystals for space missions and atmospheric research

    Recently, companies from Lithuania, Italy, and Germany have reached a new milestone in the European independent space mission - based on the Galactic project, they have developed a supply chain for Alexandrite laser crystals in Europe to study changes in the atmosphere and Earth's surface.The high-power Alexander laser crystals and coatings developed in the GALACTIC project will be used to collect...

    2023-12-22
    查看翻译