简体中文

New two-photon aggregation technology significantly reduces the cost of femtosecond laser 3D printing

131
2024-07-05 14:17:54
查看翻译

Scientists at Purdue University in the United States have developed a new type of two-photon polymerization technology. This technology cleverly combines two lasers and utilizes 3D printing technology to print complex high-resolution 3D structures while reducing femtosecond laser power by 50%. It helps to reduce the cost of high-resolution 3D printing technology, thereby further expanding its application range. The relevant research paper was published in the latest issue of the journal Optics Letters.

High resolution 3D printing structure. Image source: Optical Express magazine

Two photon polymerization is an advanced additive manufacturing technology that relies on the precise 3D printing of materials using femtosecond lasers. Despite its outstanding performance in manufacturing high-resolution microstructures, the high cost has become a roadblock to its widespread application.

In view of this, the research team creatively combined relatively low-cost lasers that emit visible light with femtosecond lasers that emit infrared pulses, reducing femtosecond laser power by 50%. This innovative method effectively reduces the printing cost of individual parts.

The new method combines the single photon absorption of 532 nanometer nanosecond laser with the two-photon absorption method of 800 nanometer femtosecond laser. To achieve the optimal balance between two types of laser printing, the team also constructed a new mathematical model to gain a deeper understanding of the photochemical processes involved and accurately calculate the synergistic effects of two-photon and single photon excitation processes, ensuring that ideal printing results can still be achieved at lower femtosecond laser power.
The experimental results show that for 2D structures, the new method reduces the required power of femtosecond lasers by 80%; For 3D structures, it is reduced by about 50%.

The team stated that high-resolution 3D printing technology has broad application prospects, including but not limited to the manufacturing of 3D electronic devices, the development of micro robots in the biomedical field, and the construction of tissue engineering 3D structures or scaffolds.

Femtosecond laser 3D printing, in short, involves the occurrence of photochemical reactions in a very small volume to construct fine three-dimensional structures. This is a very cutting-edge technology in the field of modern additive manufacturing, but it has limitations in terms of printing speed and power budget. Now, the team has printed high-resolution structures while reducing power by half, overcoming cost barriers. The most valuable thing is that this new technology can easily integrate into existing femtosecond laser 3D printing systems, enabling faster application in various fields such as biomedical, micro robots, and micro optical devices.

Source: Yangtze River Delta Laser Alliance

相关推荐
  • SpaceX will sell satellite lasers to competitors that can accelerate space communication

    SpaceX President Gwynne Shotwell stated at a meeting on Tuesday that the company has started selling satellite lasers for fast space communication to other satellite companies.SpaceX's thousands of Starlink satellites in low Earth orbit use inter satellite laser links to transmit data to each other in space at the speed of light, so that the network can provide more extensive Internet coverage wo...

    2024-05-10
    查看翻译
  • Research Progress: Extreme Ultraviolet Photolithography

    Recently, the semiconductor industry has adopted Extreme Ultraviolet Lithography (EUVL) technology. This cutting-edge photolithography technology is used for the continuous miniaturization of semiconductor devices to comply with Moore's Law. Extreme ultraviolet lithography (EUVL) has become a key technology that utilizes shorter wavelengths to achieve nanoscale feature sizes with higher accuracy a...

    2024-12-09
    查看翻译
  • Micro active vortex laser

    Recently, Dong Yibo, from the Photonic Chip Research Institute of Shanghai University of Technology, published his research findings titled "Nanoprinted Diffractive Layer Integrated Vertical Cavity Surface Emitting Vortex Lasers with Scalable Topological Charge" as the first author in the internationally renowned journal Nano Letters.This achievement was jointly completed by the team of academicia...

    2023-10-24
    查看翻译
  • Exail acquires laser company Leukos

    On January 6, 2025, Exail acquired Leukos, a laser company specializing in advanced laser sources for metrology, spectroscopy, and imaging applications. The financial terms of this acquisition have not been disclosed yet. Leukos will operate as a subsidiary of Exail, retaining its product portfolio and brand. This acquisition combines Leukos' advanced technologies, including pulsed micro lasers,...

    01-08
    查看翻译
  • Infinira launches an optical solution for 1.6 Tbps ICE-D data centers

    Infinira, an expert in optical network solutions, announced the launch of a high-speed data center optical transmission module based on single-chip indium phosphide (InP) photonic integrated circuit (PIC) technology. The company claims that the module will connect at a speed of 1.6 terabits per second (Tb/s), while reducing the cost and power consumption per bit.Yingfeilang stated that its data ce...

    2024-03-18
    查看翻译