简体中文

The United States has successfully developed a full 3D printed electric spray engine

144
2025-02-20 15:02:34
查看翻译

The fully 3D printed electric spray engine is suitable for small satellite in orbit maneuver, and its production cost is only a small part of that of traditional thrusters.


Image source: Massachusetts Institute of Technology, USA


The Massachusetts Institute of Technology team recently demonstrated an electric spray engine made entirely of 3D printing technology, which can be propelled by emitting droplets. This innovative device not only produces quickly, but also has a much lower cost than traditional thrusters. It utilizes commercially available 3D printing materials and technology, and can even complete printing in space. The relevant paper was published in the journal Advanced Science.

The working principle of the electric spray engine is to apply an electric field to the conductive liquid to generate a high-speed micro droplet jet to propel the spacecraft. This type of micro engine is particularly suitable for small satellites, such as cube satellites. Compared with chemical fuel rockets, electric spray engines are more efficient in the use of propellants, so they are more suitable for performing precise in orbit maneuver tasks. Although the thrust generated is small, the required thrust level can be achieved by paralleling multiple electric spray launchers.

The team has developed a modular process that combines two 3D printing methods, solving the challenges encountered in manufacturing complex equipment composed of macroscopic and microscopic components. They use restoration photopolymerization printing (VPP) technology, including digital light processing technology, to shine light onto photosensitive resin through a chip sized projector and solidify layer by layer to form high-resolution 3D structures. In addition, they also designed a clamping mechanism to connect various components, ensuring the water tightness of the equipment. This allows astronauts to directly print satellite engines in space without relying on equipment sent from Earth.

The printed thruster contains 32 electric spray emitters, which work together to ensure stable and uniform propellant jet. The final prototype equipment is comparable to or even better than existing equipment in terms of thrust performance.

Further research has shown that by adjusting the pressure of the propellant and the voltage applied to the engine, the droplet flow rate can be controlled to achieve a wider range of thrust output.

The researchers said that this method simplified the system design, reduced the complex pipeline, valve or pressure signal network, and provided a more portable, economical and efficient electric spray propulsion solution.

The 3D printed electric spray engine can almost mark an important breakthrough in space propulsion technology. Due to its ability to produce quickly and customize, it can quickly adjust designs according to specific needs in space missions, greatly improving execution flexibility and response speed. Especially in emergency repairs or the need for rapid deployment of new satellites, this immediate production capability is particularly important. Being able to directly manufacture engines in space means that future space missions will no longer rely solely on equipment sent from Earth, but will be able to self repair and upgrade in orbit. Therefore, this innovation not only significantly reduces production costs and time, but also brings more flexible and efficient solutions for future space exploration.

Source: laserfair

相关推荐
  • Scientists demonstrate powerful UV-visible infrared full-spectrum laser

    Figure: a. Schematic diagram of the HCF-LN-CPPLN experimental setup. W. CaF? Window M, mirror.b. The bright white light circular spots emitted by the CPPLN sample.c. The first-order diffraction beam of B displays a colorful rainbow pattern from purple to red.d. The HCF-LN-CPPLN module generates normalized spectra of the output full spectrum laser signal through the second NL HHG and third NL SPM e...

    2023-08-25
    查看翻译
  • Based on Transform Optics: Realizing an Ideal Omnidirectional Invisible Cloak in Free Space

    A team led by Professor Ye Dexin and Professor Chen Hongsheng from Zhejiang University, as well as Professor Yu Luo from Nanyang University of Technology, conducted practical research on full parameter transformation optical devices. The research team has designed and implemented an all parameter omnidirectional invisibility cloak based on the theory of linear transformation optics and omnidirecti...

    2024-04-29
    查看翻译
  • Scientists develop high-power fiber lasers to power nanosatellites

    The use of lasers in space is a reality. Although radio waves have been the backbone of space communication for many years, the demand for faster transmission of more data has made these lighter, more flexible, and safer infrared rays the future of space communication.Recently, WipThermal is a European project dedicated to developing groundbreaking solutions for wireless energy transmission in the...

    2024-01-18
    查看翻译
  • Wuhan Semiconductor Laser Equipment Industry Innovation Joint Laboratory Achieves New Breakthrough

    On February 7th, at the Wuhan Semiconductor Laser Equipment Industry Innovation Joint Laboratory located in the HGTECH Technology Intelligent Manufacturing Future Industrial Park, Huang Wei, the technical director of the laboratory and the director of HGTECH Technology's semiconductor product line, gestured with his hands to introduce the principle of "glass through-hole technology" to Changjiang ...

    02-18
    查看翻译
  • Chip guided beam for new portable 3D printers

    Imagine being able to carry a 3D printer with you and quickly create low-cost objects, such as fastening bicycle wheels or parts needed for critical medical surgeries. Scientists from the Massachusetts Institute of Technology (MIT) and the University of Texas at Austin have combined silicon photonics and photochemical technology to successfully develop the first chip based 3D printer, taking a cru...

    2024-06-18
    查看翻译