繁体中文

The United States is expected to use "AI+lasers" to deal with space debris in the future

192
2023-10-20 13:51:14
查看翻譯

Due to the increasing threat of space debris in low Earth orbit around the Earth, space agencies around the world are becoming increasingly concerned about this. According to a new study funded by the National Aeronautics and Space Administration (NASA), it may be possible to send space debris that may be at risk of colliding with orbiting spacecraft to safer orbits through a laser network deployed in space in the future, the US "Space" website said on the 19th.

The report states that space debris has an increasing impact on the safety of spacecraft in various countries. When Amazon launched two internet prototype satellites on the 6th, it was forced to delay the launch for 6 minutes to avoid colliding with space debris.

In July of this year, due to the same reasons, the launch of India's historic "Lunar Ship 3" probe was also forced to be postponed. Although space debris has been a concern for decades, efforts to address this space debris have only recently truly begun to get back on track. The idea proposed by the Space Systems Warfare Research Laboratory at the University of West Virginia is to install artificial intelligence (AI) controlled space-based lasers on satellites or other specialized platforms for monitoring space debris. When a space debris is suspected of colliding with valuable space assets such as the International Space Station or satellites, laser pulses are used to push them into safer orbits.

According to the report, the statement released by the laboratory states: "Our goal is to develop a reconfigurable space-based laser network and AI algorithms. These algorithms will make this network possible and maximize its benefits." The plan has received funding from NASA and is still in its early stages. The ultimate goal is that the system will decide on which lasers to use to target a certain space debris, At the same time, ensure that the generated trajectory does not collide.

It is said that measuring the risk level of space debris is quite difficult because not every object in orbit can be tracked. According to data from the European Space Agency, the radar system on the Earth's surface is currently tracking approximately 34600 space debris, but there may still be 130 million fragments in orbit that cannot be accurately detected or tracked due to their small size. The report states that although the mass and volume of these space debris are small, their speed is fast enough to pose a threat to orbiting satellites or spacecraft.

Previously, countries had a preference for clearing space debris, but whether it was using high-strength materials to create "space debris nets" for salvage or using high-energy lasers for burning, there were limitations. In contrast, using space-based lasers to process small space debris may be more practical, as they can be sent into predetermined orbits using laser pulse irradiation, with relatively low power requirements for lasers. The report states that using multiple lasers can more effectively alter the trajectory of space debris, which "cannot be achieved by a single laser".

In March of this year, NASA released a report showing that space-based lasers are not affected by weather compared to ground based lasers. The report states that this AI powered space cleaning system not only has cost advantages, but its precise tracking ability for space debris also helps improve the safety of space launches.

Source: Global Times

相關推薦
  • Launching the world's strongest laser at a cost of 320 million euros

    Beijing, April 1st (Reporter Liu Xia) - The world's most powerful laser has been activated recently. On March 31st, the Physicist Organization Network reported that the system can enable laser pulses to reach a peak of 10 terawatts (1 terawatt=100 terawatts=1015 watts) within 1 femtosecond (1000 trillions of a second), which is expected to promote revolutionary progress in multiple fi...

    2024-04-03
    查看翻譯
  • The research results on the implementation of micro active vortex laser using laser nanoprinting technology are published in Nano Letters

    IntroductionVortex beams carrying orbital angular momentum (OAM) are widely used for high-throughput optical information multiplexing, and achieving on chip, small-scale vortex lasers is crucial for promoting the industrial implementation of vortex light reuse technology. Recently, Gu Min, an academician of Shanghai University of Technology, and Fang Xinyuan, an associate professor of Shanghai Uni...

    2023-10-16
    查看翻譯
  • CinIonic launches a new cinema screen specifically designed for laser theaters

    CinIonic announced the launch of a new cinema screen specifically designed for laser auditoriums. CinIonic Laser Screen 2.4 amplifies the power of laser projection by optimizing efficiency and enhancing screen presentation. This new screen is aimed at becoming the ideal companion for CinIonic Laser and is the first screen product in the CinIonic All Laser Solution portfolio.The CinIonic laser scre...

    2023-09-20
    查看翻譯
  • Researchers have developed a QCL DFB continuous laser for gas detection

    Alpes Laser was founded in 1998 in Nazhatel, Switzerland and was the first company to bring quantum cascade lasers to the market. It released its first continuous laser in 2001 and its first high gain laser in 2009, thus maintaining this priority position.In 2004, the first commercial laser was introduced.Principle: In a single mode laser, the grating is etched into the active region to force the ...

    2023-08-16
    查看翻譯
  • Samsung and SK Hynix Explore Laser Debonding Technology

    According to South Korean media etnews, Samsung Electronics and SK Hynix have started the process technology conversion of high bandwidth memory (HBM) wafers, with the introduction of new technologies to prevent wafer warping as the core, which is considered to be aimed at the next generation HBM. It is expected that with the process transformation, the material and equipment supply chain will als...

    2024-07-16
    查看翻譯